Intrinsic excitability mechanisms of neuronal ensemble formation

  1. Tzitzitlini Alejandre-García  Is a corresponding author
  2. Samuel Kim
  3. Jesús Pérez-Ortega
  4. Rafael Yuste
  1. Department of Biological Sciences, Columbia University, United States
8 figures and 1 additional file

Figures

Optogenetic and electrical co-stimulation increases correlations of spontaneous activity.

(A) Image of Ruby3 reporter fluorescent of ST-ChroMe opsin expression in L2/3 pyramidal neurons in primary visual cortex, in a brain slice of an in-utero electroporated mice. Scale bar: 40 μM. (B) …

Figure 1—source data 1

Correlation coefficients of connected and unconnected neurons.

https://cdn.elifesciences.org/articles/77470/elife-77470-fig1-data1-v2.xlsx
Figure 1—source data 2

Correlation coefficients of pair of neurons before and after optogenetic or electrical stimulation.

https://cdn.elifesciences.org/articles/77470/elife-77470-fig1-data2-v2.xlsx
Effect of optogenetic and electrical stimulation in monosynaptic EPSCs and EPSPs.

(A) Representative paired whole-cell recording of synaptically connected neurons. Top: current-clamp recording of presynaptic action potentials in response to 10 current injections (5ms each; 20 …

Figure 2—source data 1

Evoked unitary EPSC before and after optogenetic stimulation.

https://cdn.elifesciences.org/articles/77470/elife-77470-fig2-data1-v2.xlsx
Figure 2—source data 2

Evoked unitary EPSC before and after electrical stimulation.

https://cdn.elifesciences.org/articles/77470/elife-77470-fig2-data2-v2.xlsx
Figure 2—source data 3

Evoked unitary EPSP before and after optogenetic and electrical stimulation.

https://cdn.elifesciences.org/articles/77470/elife-77470-fig2-data3-v2.xlsx
Effect of optogenetic stimulation in synaptic plasticity of the local circuit.

(A) Activation of opsin expressing neuronal population in the slice by LED pulses generates evoked EPSCs and EPSPs in non-expressing pyramidal neurons. Voltage-clamp recording (top) and …

Figure 3—source data 1

Evoked local circuit EPSP and EPSC before and after optogenetic stimulation.

https://cdn.elifesciences.org/articles/77470/elife-77470-fig3-data1-v2.xlsx
Optogenetic and electrical stimulation increases frequency and amplitudes of spontaneous EPSPs.

(A) Representative perforated patch-clamp recording of a neuron in current-clamp. Top: spontaneous EPSPs of a neuron before and after optogenetic stimulation. Bottom: Section of top trace shows …

Figure 4—source data 1

Spontaneous EPSPs before and after optogenetic stimulation.

https://cdn.elifesciences.org/articles/77470/elife-77470-fig4-data1-v2.xlsx
Figure 4—source data 2

Spontaneous EPSPs before and after electrical stimulation.

https://cdn.elifesciences.org/articles/77470/elife-77470-fig4-data2-v2.xlsx
Neuronal excitability increases after optogenetic or electrical stimulation.

(A) Current dependence firing rate increases after optogenetic or electrical stimulation. Firing rate increases returns to basal conditions after the application of terfenadine. Representative …

Figure 5—source data 1

Neuronal excitability increases after optogenetic or electrical stimulation.

https://cdn.elifesciences.org/articles/77470/elife-77470-fig5-data1-v2.xlsx
Membrane input resistance increases after optogenetic or electrical stimulation.

(A) Membrane resistance increases after optogenetic or electrical stimulation; these returns to control condition after terfenadine application. Representative membrane voltage recordings with …

Figure 6—source data 1

Membrane voltage responses to current injections, before and after optogenetic or electrical stimulation.

https://cdn.elifesciences.org/articles/77470/elife-77470-fig6-data1-v2.xlsx
Figure 6—source data 2

Input resistance before and after optogenetic or electrical stimulation.

https://cdn.elifesciences.org/articles/77470/elife-77470-fig6-data2-v2.xlsx
Figure 6—source data 3

Resting membrane potential before and after optogenetic or electrical stimulation.

https://cdn.elifesciences.org/articles/77470/elife-77470-fig6-data3-v2.xlsx
Spike threshold decreases after optogenetic and electrical stimulation.

(A) Firing threshold shifts to more negative potentials after optogenetic and electrical stimulation. Left: firing threshold was measured as the first action potential generated with 60 pA current …

Figure 7—source data 1

Firing threshold before and after optogenetic or electrical stimulation.

https://cdn.elifesciences.org/articles/77470/elife-77470-fig7-data1-v2.xlsx
Iceberg model of ensemble formation.

(A) Emergence of ensembles after increases in neuronal excitability. Neurons shift to a more excitable state after stimulation, so neuronal responses are amplified and the circuit now responds to an …

Additional files

Download links