Residual force enhancement is affected more by quadriceps muscle length than stretch amplitude
Abstract
Little is known about how muscle length affects residual force enhancement (rFE) in humans. We therefore investigated rFE at short, long, and very long muscle lengths within the human quadriceps and patellar tendon (PT) using conventional dynamometry with motion capture (rFETQ) and a new, non-invasive shear-wave tensiometry technique (rFEWS). Eleven healthy male participants performed submaximal (50% max.) EMG-matched fixed-end reference and stretch-hold contractions across these muscle lengths while muscle fascicle length changes of the vastus lateralis (VL) were captured using B-mode ultrasound. We found significant rFETQ at long (7±5%) and very long (12±8%), but not short (2±5%) muscle lengths, whereas rFEWS was only significant at the very long (38±27%), but not short (8±12%) or long (6±10%) muscle lengths. We also found significant relationships between VL fascicle length and rFETQ (r=0.63, p=.001) and rFEWS (r=0.52, p=.017), but relationships were not significant between VL fascicle stretch amplitude and rFETQ (r=0.33, p=.126) or rFEWS (r=0.29, p=.201). PT shear-wave speed-angle relationships did not agree with estimated PT force-angle relationships, which indicates that estimating PT loads from shear-wave tensiometry might be inaccurate. We conclude that increasing muscle length rather than stretch amplitude contributes more to rFE during submaximal voluntary contractions of the human quadriceps.
Data availability
The final processed data can be found at: https://figshare.com/s/d66e2c7400480dd0a059. It provides source data of figures 1, 2, 3, 4, 5 and 6.
Article and author information
Author details
Funding
The authors declare that there was no funding for this work.
Ethics
Human subjects: Participants gave free written informed consent prior to participating in the study. All experimental procedures were approved by the local Ethics Committee of the Faculty of Sport Science at Ruhr University Bochum and conformed with the Declaration of Helsinki.
Copyright
© 2022, Bakenecker et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 846
- views
-
- 186
- downloads
-
- 20
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.