Zebrafish fin regeneration involves generic and regeneration-specific osteoblast injury responses

Abstract

Successful regeneration requires the coordinated execution of multiple cellular responses to injury. In amputated zebrafish fins, mature osteoblasts dedifferentiate, migrate towards the injury and form proliferative osteogenic blastema cells. We show that osteoblast migration is preceded by cell elongation and alignment along the proximodistal axis, which require actomyosin, but not microtubule turnover. Surprisingly, osteoblast dedifferentiation and migration can be uncoupled. Using pharmacological and genetic interventions, we found that NF-ĸB and retinoic acid signalling regulate dedifferentiation without affecting migration, while the complement system and actomyosin dynamics affect migration but not dedifferentiation. Furthermore, by removing bone at two locations within a fin ray, we established an injury model containing two injury sites. We found that osteoblasts dedifferentiate at and migrate towards both sites, while accumulation of osteogenic progenitor cells and regenerative bone formation only occur at the distal-facing injury. Together, these data indicate that osteoblast dedifferentiation and migration represent generic injury responses that are differentially regulated and can occur independently of each other and of regenerative growth. We conclude that successful fin bone regeneration appears to involve the coordinated execution of generic and regeneration-specific responses of osteoblasts to injury.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Ivonne Margarete Sehring

    Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
    For correspondence
    Ivonne.sehring@uni-ulm.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7812-0278
  2. Hossein Falah Mohammadi

    Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Melanie Haffner-Luntzer

    Institute of Orthopaedic Research and Biomechanics, University Hospital Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Anita Ignatius

    Institute of Orthopaedic Research and Biomechanics, University Hospital Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4782-1979
  5. Markus Huber-Lang

    Institute of Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Gilbert Weidinger

    Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
    For correspondence
    gilbert.weidinger@uni-ulm.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3599-6760

Funding

Deutsche Forschungsgemeinschaft (Project-ID 251293561 - SFB 1149)

  • Gilbert Weidinger

Deutsche Forschungsgemeinschaft (project ID 316249678 - SFB 1279)

  • Gilbert Weidinger

Deutsche Forschungsgemeinschaft (project ID 450627322 - SFB 1506)

  • Gilbert Weidinger

Medical Faculty,Ulm University (Hertha-Nathorff-Program)

  • Ivonne Margarete Sehring

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Céline Colnot, INSERM U955, UNIV PARIS EST CRETEIL, France

Ethics

Animal experimentation: All procedures involving animals adhered to EU directive 2010/63/EU on the protection of animals used for scientific purposes, and were approved by the state of Baden-Württemberg (Project numbers 1193 and 1494) and by local animal experiment committees. Fish of both sexes were used. Housing and husbandry followed the recommendations of the Federation of European Laboratory Animal Science Associations (FELASA) and the European Society for Fish Models in Biology and Medicine (EUFishBioMed) (Aleström et al., 2020).

Version history

  1. Received: February 4, 2022
  2. Preprint posted: February 22, 2022 (view preprint)
  3. Accepted: June 23, 2022
  4. Accepted Manuscript published: June 24, 2022 (version 1)
  5. Version of Record published: July 6, 2022 (version 2)

Copyright

© 2022, Sehring et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,481
    views
  • 498
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ivonne Margarete Sehring
  2. Hossein Falah Mohammadi
  3. Melanie Haffner-Luntzer
  4. Anita Ignatius
  5. Markus Huber-Lang
  6. Gilbert Weidinger
(2022)
Zebrafish fin regeneration involves generic and regeneration-specific osteoblast injury responses
eLife 11:e77614.
https://doi.org/10.7554/eLife.77614

Share this article

https://doi.org/10.7554/eLife.77614

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.