Zebrafish fin regeneration involves generic and regeneration-specific osteoblast injury responses

Abstract

Successful regeneration requires the coordinated execution of multiple cellular responses to injury. In amputated zebrafish fins, mature osteoblasts dedifferentiate, migrate towards the injury and form proliferative osteogenic blastema cells. We show that osteoblast migration is preceded by cell elongation and alignment along the proximodistal axis, which require actomyosin, but not microtubule turnover. Surprisingly, osteoblast dedifferentiation and migration can be uncoupled. Using pharmacological and genetic interventions, we found that NF-ĸB and retinoic acid signalling regulate dedifferentiation without affecting migration, while the complement system and actomyosin dynamics affect migration but not dedifferentiation. Furthermore, by removing bone at two locations within a fin ray, we established an injury model containing two injury sites. We found that osteoblasts dedifferentiate at and migrate towards both sites, while accumulation of osteogenic progenitor cells and regenerative bone formation only occur at the distal-facing injury. Together, these data indicate that osteoblast dedifferentiation and migration represent generic injury responses that are differentially regulated and can occur independently of each other and of regenerative growth. We conclude that successful fin bone regeneration appears to involve the coordinated execution of generic and regeneration-specific responses of osteoblasts to injury.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Ivonne Margarete Sehring

    Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
    For correspondence
    Ivonne.sehring@uni-ulm.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7812-0278
  2. Hossein Falah Mohammadi

    Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Melanie Haffner-Luntzer

    Institute of Orthopaedic Research and Biomechanics, University Hospital Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Anita Ignatius

    Institute of Orthopaedic Research and Biomechanics, University Hospital Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4782-1979
  5. Markus Huber-Lang

    Institute of Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Gilbert Weidinger

    Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
    For correspondence
    gilbert.weidinger@uni-ulm.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3599-6760

Funding

Deutsche Forschungsgemeinschaft (Project-ID 251293561 - SFB 1149)

  • Gilbert Weidinger

Deutsche Forschungsgemeinschaft (project ID 316249678 - SFB 1279)

  • Gilbert Weidinger

Deutsche Forschungsgemeinschaft (project ID 450627322 - SFB 1506)

  • Gilbert Weidinger

Medical Faculty,Ulm University (Hertha-Nathorff-Program)

  • Ivonne Margarete Sehring

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals adhered to EU directive 2010/63/EU on the protection of animals used for scientific purposes, and were approved by the state of Baden-Württemberg (Project numbers 1193 and 1494) and by local animal experiment committees. Fish of both sexes were used. Housing and husbandry followed the recommendations of the Federation of European Laboratory Animal Science Associations (FELASA) and the European Society for Fish Models in Biology and Medicine (EUFishBioMed) (Aleström et al., 2020).

Reviewing Editor

  1. Céline Colnot, INSERM U955, UNIV PARIS EST CRETEIL, France

Version history

  1. Received: February 4, 2022
  2. Preprint posted: February 22, 2022 (view preprint)
  3. Accepted: June 23, 2022
  4. Accepted Manuscript published: June 24, 2022 (version 1)
  5. Version of Record published: July 6, 2022 (version 2)

Copyright

© 2022, Sehring et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,940
    Page views
  • 448
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ivonne Margarete Sehring
  2. Hossein Falah Mohammadi
  3. Melanie Haffner-Luntzer
  4. Anita Ignatius
  5. Markus Huber-Lang
  6. Gilbert Weidinger
(2022)
Zebrafish fin regeneration involves generic and regeneration-specific osteoblast injury responses
eLife 11:e77614.
https://doi.org/10.7554/eLife.77614

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Bronwyn A Lucas, Benjamin A Himes, Nikolaus Grigorieff
    Research Advance

    Previously we showed that 2D template matching (2DTM) can be used to localize macromolecular complexes in images recorded by cryogenic electron microscopy (cryo-EM) with high precision, even in the presence of noise and cellular background (Lucas et al., 2021; Lucas et al., 2022). Here, we show that once localized, these particles may be averaged together to generate high-resolution 3D reconstructions. However, regions included in the template may suffer from template bias, leading to inflated resolution estimates and making the interpretation of high-resolution features unreliable. We evaluate conditions that minimize template bias while retaining the benefits of high-precision localization, and we show that molecular features not present in the template can be reconstructed at high resolution from targets found by 2DTM, extending prior work at low-resolution. Moreover, we present a quantitative metric for template bias to aid the interpretation of 3D reconstructions calculated with particles localized using high-resolution templates and fine angular sampling.

    1. Cell Biology
    2. Immunology and Inflammation
    Yijun Zhang, Tao Wu ... Li Wu
    Research Article

    Dendritic cells (DCs), the key antigen-presenting cells, are primary regulators of immune responses. Transcriptional regulation of DC development had been one of the major research interests in DC biology, however, the epigenetic regulatory mechanisms during DC development remains unclear. Here, we report that Histone deacetylase 3 (Hdac3), an important epigenetic regulator, is highly expressed in pDCs, and its deficiency profoundly impaired the development of pDCs. Significant disturbance of homeostasis of hematopoietic progenitors was also observed in HDAC3-deficient mice, manifested by altered cell numbers of these progenitors and defective differentiation potentials for pDCs. Using the in vitro Flt3L supplemented DC culture system, we further demonstrated that HDAC3 was required for the differentiation of pDCs from progenitors at all developmental stages. Mechanistically, HDAC3 deficiency resulted in enhanced expression of cDC1-associated genes, owing to markedly elevated H3K27 acetylation (H3K27ac) at these gene sites in BM pDCs. In contrast, the expression of pDC-associated genes was significantly downregulated, leading to defective pDC differentiation.