Zebrafish fin regeneration involves generic and regeneration-specific osteoblast injury responses

Abstract

Successful regeneration requires the coordinated execution of multiple cellular responses to injury. In amputated zebrafish fins, mature osteoblasts dedifferentiate, migrate towards the injury and form proliferative osteogenic blastema cells. We show that osteoblast migration is preceded by cell elongation and alignment along the proximodistal axis, which require actomyosin, but not microtubule turnover. Surprisingly, osteoblast dedifferentiation and migration can be uncoupled. Using pharmacological and genetic interventions, we found that NF-ĸB and retinoic acid signalling regulate dedifferentiation without affecting migration, while the complement system and actomyosin dynamics affect migration but not dedifferentiation. Furthermore, by removing bone at two locations within a fin ray, we established an injury model containing two injury sites. We found that osteoblasts dedifferentiate at and migrate towards both sites, while accumulation of osteogenic progenitor cells and regenerative bone formation only occur at the distal-facing injury. Together, these data indicate that osteoblast dedifferentiation and migration represent generic injury responses that are differentially regulated and can occur independently of each other and of regenerative growth. We conclude that successful fin bone regeneration appears to involve the coordinated execution of generic and regeneration-specific responses of osteoblasts to injury.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.

Article and author information

Author details

  1. Ivonne Margarete Sehring

    Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
    For correspondence
    Ivonne.sehring@uni-ulm.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7812-0278
  2. Hossein Falah Mohammadi

    Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Melanie Haffner-Luntzer

    Institute of Orthopaedic Research and Biomechanics, University Hospital Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Anita Ignatius

    Institute of Orthopaedic Research and Biomechanics, University Hospital Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4782-1979
  5. Markus Huber-Lang

    Institute of Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Gilbert Weidinger

    Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
    For correspondence
    gilbert.weidinger@uni-ulm.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3599-6760

Funding

Deutsche Forschungsgemeinschaft (Project-ID 251293561 - SFB 1149)

  • Gilbert Weidinger

Deutsche Forschungsgemeinschaft (project ID 316249678 - SFB 1279)

  • Gilbert Weidinger

Deutsche Forschungsgemeinschaft (project ID 450627322 - SFB 1506)

  • Gilbert Weidinger

Medical Faculty,Ulm University (Hertha-Nathorff-Program)

  • Ivonne Margarete Sehring

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals adhered to EU directive 2010/63/EU on the protection of animals used for scientific purposes, and were approved by the state of Baden-Württemberg (Project numbers 1193 and 1494) and by local animal experiment committees. Fish of both sexes were used. Housing and husbandry followed the recommendations of the Federation of European Laboratory Animal Science Associations (FELASA) and the European Society for Fish Models in Biology and Medicine (EUFishBioMed) (Aleström et al., 2020).

Copyright

© 2022, Sehring et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,667
    views
  • 519
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ivonne Margarete Sehring
  2. Hossein Falah Mohammadi
  3. Melanie Haffner-Luntzer
  4. Anita Ignatius
  5. Markus Huber-Lang
  6. Gilbert Weidinger
(2022)
Zebrafish fin regeneration involves generic and regeneration-specific osteoblast injury responses
eLife 11:e77614.
https://doi.org/10.7554/eLife.77614

Share this article

https://doi.org/10.7554/eLife.77614

Further reading

    1. Cell Biology
    Jessica E Schwarz, Antonijo Mrčela ... Amita Sehgal
    Short Report

    Aging is associated with a number of physiologic changes including perturbed circadian rhythms; however, mechanisms by which rhythms are altered remain unknown. To test the idea that circulating factors mediate age-dependent changes in peripheral rhythms, we compared the ability of human serum from young and old individuals to synchronize circadian rhythms in culture. We collected blood from apparently healthy young (age 25–30) and old (age 70–76) individuals at 14:00 and used the serum to synchronize cultured fibroblasts. We found that young and old sera are equally competent at initiating robust ~24 hr oscillations of a luciferase reporter driven by clock gene promoter. However, cyclic gene expression is affected, such that young and old sera promote cycling of different sets of genes. Genes that lose rhythmicity with old serum entrainment are associated with oxidative phosphorylation and Alzheimer’s Disease as identified by STRING and IPA analyses. Conversely, the expression of cycling genes associated with cholesterol biosynthesis increased in the cells entrained with old serum. Genes involved in the cell cycle and transcription/translation remain rhythmic in both conditions. We did not observe a global difference in the distribution of phase between groups, but found that peak expression of several clock-controlled genes (PER3, NR1D1, NR1D2, CRY1, CRY2, and TEF) lagged in the cells synchronized ex vivo with old serum. Taken together, these findings demonstrate that age-dependent blood-borne factors affect circadian rhythms in peripheral cells and have the potential to impact health and disease via maintaining or disrupting rhythms respectively.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Julia Shangguan, Ronald S Rock
    Research Article

    Myosin 10 (Myo10) is a motor protein known for its role in filopodia formation. Although Myo10-driven filopodial dynamics have been characterized, there is no information about the absolute number of Myo10 molecules during the filopodial lifecycle. To better understand molecular stoichiometries and packing restraints in filopodia, we measured Myo10 abundance in these structures. We combined SDS-PAGE densitometry with epifluorescence microscopy to quantitate HaloTag-labeled Myo10 in U2OS cells. About 6% of total intracellular Myo10 localizes to filopodia, where it enriches at opposite cellular ends. Hundreds of Myo10s are in a typical filopodium, and their distribution across filopodia is log-normal. Some filopodial tips even contain more Myo10 than accessible binding sites on the actin filament bundle. Live-cell movies reveal a dense cluster of over a hundred Myo10 molecules that initiates filopodial elongation. Hundreds of Myo10 molecules continue to accumulate during filopodial growth, but accumulation ceases when retraction begins. Rates of filopodial elongation, second-phase elongation, and retraction are inversely related to Myo10 quantities. Our estimates of Myo10 molecules in filopodia provide insight into the physics of packing Myo10, its cargo, and other filopodia-associated proteins in narrow membrane compartments. Our protocol provides a framework for future work analyzing Myo10 abundance and distribution upon perturbation.