Evidence for RNA or protein transport from somatic tissues to the male reproductive tract in mouse
Abstract
The development of tools to manipulate the mouse genome, including knockout and transgenic technology, has revolutionized our ability to explore gene function in mammals. Moreover, for genes that are expressed in multiple tissues or at multiple stages of development, the use of tissue-specific expression of the Cre recombinase allows gene function to be perturbed in specific cell types and/or at specific times. However, it is well known that putative tissue-specific promoters often drive unanticipated 'off target' expression. In our efforts to explore the biology of the male reproductive tract, we unexpectedly found that expression of Cre in the central nervous system resulted in recombination in the epididymis, a tissue where sperm mature for ~1-2 weeks following the completion of testicular development. Remarkably, we not only observed reporter expression in the epididymis when Cre expression was driven from neuron-specific transgenes, but also when Cre expression in the brain was induced from an AAV vector carrying a Cre expression construct. A surprisingly wide range of Cre drivers - including six different neuronal promoters as well as the adipose-specific Adipoq Cre promoter - exhibited off target recombination in the epididymis, with a subset of drivers also exhibiting unexpected activity in other tissues such as the reproductive accessory glands. Using a combination of parabiosis and serum transfer experiments, we find evidence supporting the hypothesis that Cre may be trafficked from its cell of origin to the epididymis through the circulatory system. Together, our findings should motivate extreme caution when interpreting conditional alleles, and suggest the exciting possibility of inter-tissue RNA or protein trafficking in modulation of reproductive biology.
Data availability
A representative subset of the raw image data (with supporting metadata) will be made publicly available on acceptance. Source data for gels/blots has been provided.
Article and author information
Author details
Funding
Templeton World Charity Foundation (61350)
- Vera RInaldi
- Bethany C Berry
- Shweta Kukreja
- Oliver J Rando
National Institutes of Health (R01HD080224)
- Kathleen Desevin
- Fengyun Sun
- Oliver J Rando
National Institutes of Health (R01DA047678)
- Andrew R Tapper
National Institutes of Health (DP1AG063419)
- Kathleen Messemer
- Amy J Wagers
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All animal use was approved by the Institutional Animal Care and Use Committees of UMass Chan Medical School and Harvard Faculty of Arts and Sciences, under protocol PROTO202100029 to Dr. Oliver Rando and protocol 29014 awarded to Dr. Amy Wagers.
Copyright
© 2023, RInaldi et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
During the first lineage segregation, mammalian embryos generate the inner cell mass (ICM) and trophectoderm (TE). ICM gives rise to the epiblast (EPI) that forms all cell types of the body, an ability referred to as pluripotency. The molecular mechanisms that induce pluripotency in embryos remain incompletely elucidated. Using knockout (KO) mouse models in conjunction with low-input ATAC-seq and RNA-seq, we found that Oct4 and Sox2 gradually come into play in the early ICM, coinciding with the initiation of Sox2 expression. Oct4 and Sox2 activate the pluripotency-related genes through the putative OCT-SOX enhancers in the early ICM. Furthermore, we observed a substantial reorganization of chromatin landscape and transcriptome from the morula to the early ICM stages, which was partially driven by Oct4 and Sox2, highlighting their pivotal role in promoting the developmental trajectory toward the ICM. Our study provides new insights into the establishment of the pluripotency network in mouse preimplantation embryos.
-
- Developmental Biology
- Neuroscience
The ligand Netrin mediates axon guidance through a combination of haptotaxis over short distances and chemotaxis over longer distances.