Retinoic acid-induced protein 14 controls dendritic spine dynamics associated with depressive-like behaviors

Abstract

Dendritic spines are the central postsynaptic machinery that determines synaptic function. The F-actin within dendritic spines regulates their dynamic formation and elimination. Rai14 is an F‑actin-regulating protein with a membrane‑shaping function. Here, we identified the roles of Rai14 for the regulation of dendritic spine dynamics associated with stress-induced depressive-like behaviors. Rai14-deficient neurons exhibit reduced dendritic spine density in the Rai14+/- mouse brain, resulting in impaired functional synaptic activity. Rai14 was protected from degradation by complex formation with Tara, and accumulated in the dendritic spine neck, thereby enhancing spine maintenance. Concurrently, Rai14 deficiency in mice altered gene expression profile relevant to depressive conditions and increased depressive-like behaviors. Moreover, Rai14 expression was reduced in the prefrontal cortex of the mouse stress model, which was blocked by antidepressant treatment. Thus, we propose that Rai14-dependent regulation of dendritic spines may underlie the plastic changes of neuronal connections relevant to depressive-like behaviors.

Data availability

Source data files including the numerical data associated with the figures are provided (for figures 1, 2, 3, 4, and 5). The source data files with original uncropped western blot images are also provided as PDF files (figures with the uncropped gels with relevant band labelled) and a zipped folder (the original files of the raw unedited gels).Sequencing data have been deposited at Dryad (doi:10.5061/dryad.1rn8pk0w9)

The following data sets were generated

Article and author information

Author details

  1. Soo Jeong Kim

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Youngsik Woo

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8308-8532
  3. Hyun Jin Kim

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9108-151X
  4. Bon Seong Goo

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Truong Thi My Nhung

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  6. Seol-Ae Lee

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  7. Bo Kyoung Suh

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8079-9446
  8. Dong Jin Mun

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  9. Joung-Hun Kim

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  10. Sang Ki Park

    Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
    For correspondence
    skpark@postech.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1023-7864

Funding

National Research Foundation of Korea (NRF-2021R1A2C3010639)

  • Sang Ki Park

National Research Foundation of Korea (NRF-2020M3E5E2039894)

  • Sang Ki Park

National Research Foundation of Korea (NRF-2017R1A5A1015366)

  • Sang Ki Park

Ministry of Science and ICT, South Korea (21-BR-03-01)

  • Sang Ki Park

Ministry of Education (2020R1A6A3A01096024)

  • Youngsik Woo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All of the animals were handled according to approved Institutional Animal Care and Use Committee (IACUC) of Pohang University of Science and Technology (POSTECH-2017-0037, POSTECH-2019-0025, POSTECH-2020-0008, and POSTECH-2020-0018). All experiments were carried out under the approved guidelines.

Copyright

© 2022, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,377
    views
  • 235
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Soo Jeong Kim
  2. Youngsik Woo
  3. Hyun Jin Kim
  4. Bon Seong Goo
  5. Truong Thi My Nhung
  6. Seol-Ae Lee
  7. Bo Kyoung Suh
  8. Dong Jin Mun
  9. Joung-Hun Kim
  10. Sang Ki Park
(2022)
Retinoic acid-induced protein 14 controls dendritic spine dynamics associated with depressive-like behaviors
eLife 11:e77755.
https://doi.org/10.7554/eLife.77755

Share this article

https://doi.org/10.7554/eLife.77755

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Richard A Kahn, Harvinder Virk ... Skye Longworth
    Feature Article

    Antibodies are used in many areas of biomedical and clinical research, but many of these antibodies have not been adequately characterized, which casts doubt on the results reported in many scientific papers. This problem is compounded by a lack of suitable control experiments in many studies. In this article we review the history of the ‘antibody characterization crisis’, and we document efforts and initiatives to address the problem, notably for antibodies that target human proteins. We also present recommendations for a range of stakeholders – researchers, universities, journals, antibody vendors and repositories, scientific societies and funders – to increase the reproducibility of studies that rely on antibodies.

    1. Cancer Biology
    2. Cell Biology
    Francesca Butera, Julia E Sero ... Chris Bakal
    Research Article

    The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in PDAC tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.