The integrated stress response remodels the microtubule organizing center to clear unfolded proteins following proteotoxic stress

  1. Brian Hurwitz
  2. Nicola Guzzi
  3. Anita Gola
  4. Vincent F Fiore
  5. Ataman Sendoel
  6. Maria Nikolova
  7. Douglas Barrows
  8. Thomas S Carroll
  9. H Amalia Pasolli
  10. Elaine Fuchs  Is a corresponding author
  1. Howard Hughes Medical Institute, The Rockefeller University, United States
  2. University of Zurich, Switzerland
  3. Rockefeller University, United States

Abstract

Cells encountering stressful situations activate the integrated stress response (ISR) pathway to limit protein synthesis and redirect translation to better cope. The ISR has also been implicated in cancers, but redundancies in the stress-sensing kinases that trigger the ISR have posed hurdles to dissecting physiological relevance. To overcome this challenge, we targeted the regulatory node of these kinases, namely the S51 phosphorylation site of eukaryotic translation initiation factor eIF2α and genetically replaced eIF2α with eIF2α-S51A in mouse squamous cell carcinoma (SCC) stem cells of skin. While inconsequential under normal growth conditions, the vulnerability of this ISR-null state was unveiled when SCC stem cells experienced proteotoxic stress. Seeking mechanistic insights into the protective roles of the ISR, we combined ribosome profiling and functional approaches to identify and probe the functional importance of translational differences between ISR-competent and ISR-null SCC stem cells when exposed to proteotoxic stress. In doing so, we learned that the ISR redirects translation to centrosomal proteins that orchestrate the microtubule dynamics needed to efficiently concentrate unfolded proteins at the microtubule organizing center so that they can be cleared by the perinuclear degradation machinery. Thus, rather than merely maintaining survival during proteotoxic stress, the ISR also functions in promoting cellular recovery once the stress has subsided. Remarkably, this molecular program is unique to transformed skin stem cells hence exposing a vulnerability in cancer that could be exploited therapeutically.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE193945

The following data sets were generated

Article and author information

Author details

  1. Brian Hurwitz

    Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  2. Nicola Guzzi

    Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3898-8064
  3. Anita Gola

    Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  4. Vincent F Fiore

    Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  5. Ataman Sendoel

    Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
    Competing interests
    No competing interests declared.
  6. Maria Nikolova

    Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  7. Douglas Barrows

    Bioinformatics Resource Center, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  8. Thomas S Carroll

    Bioinformatics Resouce Center, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  9. H Amalia Pasolli

    Electron Microscopy Resource Center, Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  10. Elaine Fuchs

    Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    For correspondence
    fuchs@rockefeller.edu
    Competing interests
    Elaine Fuchs, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0978-5137

Funding

Howard Hughes Medical Institute

  • Elaine Fuchs

Ruth Kirschstein NIH Predoctoral Fellow (F30CA236239)

  • Brian Hurwitz

Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional Medical Scientist Training Program (T32GM007739)

  • Brian Hurwitz

HHMI Jane Coffin Childs Associate

  • Nicola Guzzi

Damon Runyon Cancer Research Foundation National Mah Jongg League Fellowship (DRG 2409-20)

  • Anita Gola

National Institutes of Health (R01-AR27883)

  • Elaine Fuchs

Robertson Foundation

  • Brian Hurwitz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: All animal procedures used in this study are described in our #20066H protocol named Development and Differentiation in the Skin, which had been previously reviewed and approved by the Rockefeller University Institutional Animal Care and Use Committee (IACUC).

Copyright

© 2022, Hurwitz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,892
    views
  • 774
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brian Hurwitz
  2. Nicola Guzzi
  3. Anita Gola
  4. Vincent F Fiore
  5. Ataman Sendoel
  6. Maria Nikolova
  7. Douglas Barrows
  8. Thomas S Carroll
  9. H Amalia Pasolli
  10. Elaine Fuchs
(2022)
The integrated stress response remodels the microtubule organizing center to clear unfolded proteins following proteotoxic stress
eLife 11:e77780.
https://doi.org/10.7554/eLife.77780

Share this article

https://doi.org/10.7554/eLife.77780

Further reading

    1. Cancer Biology
    Ruijing Tang, Luobin Guo ... Xiaolong Liu
    Research Article

    Tumor neoantigen peptide vaccines hold potential for boosting cancer immunotherapy, yet efficiently co-delivering peptides and adjuvants to antigen-presenting cells in vivo remains challenging. Virus-like particle (VLP), which is a kind of multiprotein structure organized as virus, can deliver therapeutic substances into cells and stimulate immune response. However, the weak targeted delivery of VLP in vivo and its susceptibility to neutralization by antibodies hinder their clinical applications. Here, we first designed a novel protein carrier using the mammalian-derived capsid protein PEG10, which can self-assemble into endogenous VLP (eVLP) with high protein loading and transfection efficiency. Then, an engineered tumor vaccine, named ePAC, was developed by packaging genetically encoded neoantigen into eVLP with further modification of CpG-ODN on its surface to serve as an adjuvant and targeting unit to dendritic cells (DCs). Significantly, ePAC can efficiently target and transport neoantigens to DCs, and promote DCs maturation to induce neoantigen-specific T cells. Moreover, in mouse orthotopic liver cancer and humanized mouse tumor models, ePAC combined with anti-TIM-3 exhibited remarkable antitumor efficacy. Overall, these results support that ePAC could be safely utilized as cancer vaccines for antitumor therapy, showing significant potential for clinical translation.

    1. Cancer Biology
    Elazar Besser, Anat Gelfand ... David Meiri
    Research Article

    In T-cell acute lymphoblastic leukemia (T-ALL), more than 50% of cases display autoactivation of Notch1 signaling, leading to oncogenic transformation. We have previously identified a specific chemovar of Cannabis that induces apoptosis by preventing Notch1 maturation in leukemia cells. Here, we isolated three cannabinoids from this chemovar that synergistically mimic the effects of the whole extract. Two were previously known, cannabidiol (CBD) and cannabidivarin (CBDV), whereas the third cannabinoid, which we termed 331-18A, was identified and fully characterized in this study. We demonstrated that these cannabinoids act through cannabinoid receptor type 2 and TRPV1 to activate the integrated stress response pathway by depleting intracellular Ca2+. This is followed by increased mRNA and protein expression of ATF4, CHOP, and CHAC1, which is hindered by inhibiting the upstream initiation factor eIF2α. The increased abundance of CHAC1 prevents Notch1 maturation, thereby reducing the levels of the active Notch1 intracellular domain, and consequently decreasing cell viability and increasing apoptosis. Treatment with the three isolated molecules resulted in reduced tumor size and weight in vivo and slowed leukemia progression in mice models. Altogether, this study elucidated the mechanism of action of three distinct cannabinoids in modulating the Notch1 pathway, and constitutes an important step in the establishment of a new therapy for treating NOTCH1-mutated diseases and cancers such as T-ALL.