Contribution of behavioural variability to representational drift
Abstract
Neuronal responses to similar stimuli change dynamically over time, raising the question of how internal representations can provide a stable substrate for neural coding. Recent work has suggested a large degree of drift in neural representations even in sensory cortices, which are believed to store stable representations of the external world. While the drift of these representations is mostly characterized in relation to external stimuli, the behavioural state of the animal (for instance, the level of arousal) is also known to strongly modulate the neural activity. We therefore asked how the variability of such modulatory mechanisms can contribute to representational changes. We analysed large-scale recording of neural activity from the Allen Brain Observatory, which was used before to document representational drift in the mouse visual cortex. We found that, within these datasets, behavioural variability significantly contributes to representational changes. This effect was broadcasted across various cortical areas in the mouse, including the primary visual cortex, higher order visual areas, and even regions not primarily linked to vision like hippocampus. Our computational modelling suggests that these results are consistent with independent modulation of neural activity by behaviour over slower time scales. Importantly, our analysis suggests that reliable but variable modulation of neural representations by behaviour can be misinterpreted as representational drift, if neuronal representations are only characterized in the stimulus space and marginalised over behavioural parameters.
Data availability
All data needed to evaluate the conclusions in the paper are presented in the paper and/or the Supplementary Materials.Source Data Files have been provided for Figures 1, 2, 4 and 6 (uploaded as Excel files).Analysis code is uploaded as Source Code for Figures 1-4.
-
Survey of spiking in the mouse visual system reveals functional hierarchyhttps://www.nature.com/articles/s41586-020-03171-x.
-
Visual Coding - Neuropixelshttps://portal.brain-map.org/explore/circuits/visual-coding-neuropixels.
Article and author information
Author details
Funding
Wellcome Trust (225412/Z/22/Z)
- Sadra Sadeh
Wellcome Trust (200790/Z/16/Z)
- Claudia Clopath
Biotechnology and Biological Sciences Research Council (BB/N013956/1)
- Claudia Clopath
Biotechnology and Biological Sciences Research Council (BB/N019008/1)
- Claudia Clopath
Simons Foundation (564408)
- Claudia Clopath
Engineering and Physical Sciences Research Council (EP/R035806/1)
- Claudia Clopath
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Sadeh & Clopath
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,549
- views
-
- 712
- downloads
-
- 50
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 50
- citations for umbrella DOI https://doi.org/10.7554/eLife.77907