Automated hippocampal unfolding for morphometry and subfield segmentation with HippUnfold

  1. Jordan DeKraker  Is a corresponding author
  2. Roy AM Haast
  3. Mohamed D Yousif
  4. Bradley Karat
  5. Jonathan C Lau
  6. Stefan Köhler
  7. Ali R Khan  Is a corresponding author
  1. University of Western Ontario, Canada
  2. Aix-Marseille University, France

Abstract

Like neocortical structures, the archicortical hippocampus differs in its folding patterns across individuals. Here, we present an automated and robust BIDS-App, HippUnfold, for defining and indexing individual-specific hippocampal folding in MRI, analogous to popular tools used in neocortical reconstruction. Such tailoring is critical for inter-individual alignment, with topology serving as the basis for homology. This topological framework enables qualitatively new analyses of morphological and laminar structure in the hippocampus or its subfields. It is critical for refining current neuroimaging analyses at a meso- as well as micro-scale. HippUnfold uses state-of-the-art deep learning combined with previously developed topological constraints to generate uniquely folded surfaces to fit a given subject's hippocampal conformation. It is designed to work with commonly employed sub-millimetric MRI acquisitions, with possible extension to microscopic resolution. In this paper we describe the power of HippUnfold in feature extraction, and highlight its unique value compared to several extant hippocampal subfield analysis methods.

Data availability

All code for the HippUnfold application has been made available at https://github.com/khanlab/hippunfold. Data and code to generate the Figures shown in this study have been made available at https://zenodo.org/record/6360647.

The following previously published data sets were used

Article and author information

Author details

  1. Jordan DeKraker

    University of Western Ontario, London, Canada
    For correspondence
    jordan.dekraker@mail.mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4093-0582
  2. Roy AM Haast

    Aix-Marseille University, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Mohamed D Yousif

    University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Bradley Karat

    University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6550-1418
  5. Jonathan C Lau

    University of Western Ontario, London, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Stefan Köhler

    Brain and Mind Institute, University of Western Ontario, london, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1905-6453
  7. Ali R Khan

    University of Western Ontario, London, Canada
    For correspondence
    alik@robarts.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0760-8647

Funding

Canadian HIV Trials Network, Canadian Institutes of Health Research (366062)

  • Stefan Köhler
  • Ali R Khan

Canada Research Chairs (950-231964)

  • Ali R Khan

Natural Sciences and Engineering Research Council of Canada (6639)

  • Ali R Khan

Canada Foundation for Innovation (37427)

  • Ali R Khan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent and consent to publish were obtained by the original authors of the open source data examined here. Each of the three datasets included research ethics board approvals, as well as informed consent and, in the HCP-Aging dataset, assessment of the subjects' ability to provide consent. For the single epilepsy patient case examined here, research ethics board approval and informed consent were collected at the Western University (HSREB # 108952, Lawson: R-17-156).

Copyright

© 2022, DeKraker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,472
    views
  • 354
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jordan DeKraker
  2. Roy AM Haast
  3. Mohamed D Yousif
  4. Bradley Karat
  5. Jonathan C Lau
  6. Stefan Köhler
  7. Ali R Khan
(2022)
Automated hippocampal unfolding for morphometry and subfield segmentation with HippUnfold
eLife 11:e77945.
https://doi.org/10.7554/eLife.77945

Share this article

https://doi.org/10.7554/eLife.77945

Further reading

    1. Developmental Biology
    2. Neuroscience
    Xingsen Zhao, Qihang Sun ... Xuekun Li
    Research Article

    Williams syndrome (WS; OMIM#194050) is a rare disorder, which is caused by the microdeletion of one copy of 25–27 genes, and WS patients display diverse neuronal deficits. Although remarkable progresses have been achieved, the mechanisms for these distinct deficits are still largely unknown. Here, we have shown that neural progenitor cells (NPCs) in WS forebrain organoids display abnormal proliferation and differentiation capabilities, and synapse formation. Genes with altered expression are related to neuronal development and neurogenesis. Single cell RNA-seq (scRNA-seq) data analysis revealed 13 clusters in healthy control and WS organoids. WS organoids show an aberrant generation of excitatory neurons. Mechanistically, the expression of transthyretin (TTR) are remarkably decreased in WS forebrain organoids. We have found that GTF2IRD1 encoded by one WS associated gene GTF2IRD1 binds to TTR promoter regions and regulates the expression of TTR. In addition, exogenous TTR can activate ERK signaling and rescue neurogenic deficits of WS forebrain organoids. Gtf2ird1-deficient mice display similar neurodevelopmental deficits as observed in WS organoids. Collectively, our study reveals critical function of GTF2IRD1 in regulating neurodevelopment of WS forebrain organoids and mice through regulating TTR-ERK pathway.

    1. Computational and Systems Biology
    2. Neuroscience
    Jian Qiu, Margaritis Voliotis ... Martin J Kelly
    Research Article

    Hypothalamic kisspeptin (Kiss1) neurons are vital for pubertal development and reproduction. Arcuate nucleus Kiss1 (Kiss1ARH) neurons are responsible for the pulsatile release of gonadotropin-releasing hormone (GnRH). In females, the behavior of Kiss1ARH neurons, expressing Kiss1, neurokinin B (NKB), and dynorphin (Dyn), varies throughout the ovarian cycle. Studies indicate that 17β-estradiol (E2) reduces peptide expression but increases Slc17a6 (Vglut2) mRNA and glutamate neurotransmission in these neurons, suggesting a shift from peptidergic to glutamatergic signaling. To investigate this shift, we combined transcriptomics, electrophysiology, and mathematical modeling. Our results demonstrate that E2 treatment upregulates the mRNA expression of voltage-activated calcium channels, elevating the whole-cell calcium current that contributes to high-frequency burst firing. Additionally, E2 treatment decreased the mRNA levels of canonical transient receptor potential (TPRC) 5 and G protein-coupled K+ (GIRK) channels. When Trpc5 channels in Kiss1ARH neurons were deleted using CRISPR/SaCas9, the slow excitatory postsynaptic potential was eliminated. Our data enabled us to formulate a biophysically realistic mathematical model of Kiss1ARH neurons, suggesting that E2 modifies ionic conductances in these neurons, enabling the transition from high-frequency synchronous firing through NKB-driven activation of TRPC5 channels to a short bursting mode facilitating glutamate release. In a low E2 milieu, synchronous firing of Kiss1ARH neurons drives pulsatile release of GnRH, while the transition to burst firing with high, preovulatory levels of E2 would facilitate the GnRH surge through its glutamatergic synaptic connection to preoptic Kiss1 neurons.