Attention deficit hyperactivity disorder symptoms and brain morphology: examining confounding bias
Abstract
Background: Associations between attention-deficit/hyperactivity disorder (ADHD) and brain morphology have been reported, although with several inconsistencies. These may partly stem from confounding bias, which could distort associations and limit generalizability. We examined how associations between brain morphology and ADHD symptoms change with adjustments for potential confounders typically overlooked in the literature (aim 1), and for IQ and head motion, which are typically corrected for but play ambiguous roles (aim 2).
Methods: Participants were 10-year-old children from the Adolescent Brain Cognitive Development (N=7,722) and Generation R (N=2,531) studies. Cortical area, volume, and thickness were measured with MRI and ADHD symptoms with the Child Behavior Checklist. Surface-based cross-sectional analyses were run.
Results: ADHD symptoms related to widespread cortical regions when solely adjusting for demographic factors. Additional adjustments for socioeconomic and maternal behavioral confounders (aim 1) generally attenuated associations, as cluster sizes halved and effect sizes substantially reduced. Cluster sizes further changed when including IQ and head motion (aim 2), however, we argue that adjustments might have introduced bias.
Conclusions: Careful confounder selection and control can help identify more robust and specific regions of associations for ADHD symptoms, across two cohorts. We provided guidance to minimizing confounding bias in psychiatric neuroimaging.
Funding: Authors are supported by an NWO-VICI grant (NWO-ZonMW: 016.VICI.170.200 to HT) for HT, LDA, SL, and the Sophia Foundation S18-20, and Erasmus University and Erasmus MC Fellowship for RLM.
Data availability
All datasets for this article are not automatically publicly available due to legal and informed consent restrictions. Reasonable requests to access the datasets should be directed to the Director of the Generation R Study, Vincent Jaddoe (generationr@erasmusmc.nl), in accordance with the local, national, and European Union regulations. Data for The ABCD Study is already open and available in the NIMH Data Archive (NDA) (nda.nih.gov) to eligible researchers within NIH-verified institutions. Data can be accessed following a data request to the NIH data access committee (https://nda.nih.gov/), which should include information on the planned topic of study. The request is valid for one year. Data use should be in line with the NDA Data Use Certification. The code used for this study is publicly available athttps://github.com/LorenzaDA/ADHD_brainmorphology_confounding
Article and author information
Author details
Funding
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO-ZonMW: 016.VICI.170.200)
- Henning Tiemeier
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO-ZonMW: 016.VICI.170.200)
- Lorenza Dall'Aglio
Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO-ZonMW: 016.VICI.170.200)
- Sander Lamballais
Erasmus Medisch Centrum (Sophia Foundation S18-20)
- Ryan L Muetzel
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Research protocols for the ABCD study were approved by the institutional review board of the University of California, San Diego (#160091), and the institutional review boards of the 21 data collection sites, while the design of the Generation R study was approved by the Medical Ethics Committee of the Erasmus MC (METC-2012-165). For both studies, written informed consent and assent from the primary caregiver or child were obtained.
Copyright
© 2022, Dall'Aglio et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,732
- views
-
- 189
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Epidemiology and Global Health
- Genetics and Genomics
Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.
-
- Epidemiology and Global Health
Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.