Differentiation signals from glia are fine-tuned to set neuronal numbers during development

Abstract

Neural circuit formation and function require that diverse neurons are specified in appropriate numbers. Known strategies for controlling neuronal numbers involve regulating either cell proliferation or survival. We used the Drosophila visual system to probe how neuronal numbers are set. Photoreceptors from the eye-disc induce their target field, the lamina, such that for every unit eye there is a corresponding lamina unit (column). Although each column initially contains ~6 post-mitotic lamina precursors, only 5 differentiate into neurons, called L1-L5; the 'extra' precursor, which is invariantly positioned above the L5 neuron in each column, undergoes apoptosis. Here, we showed that a glial population called the outer chiasm giant glia (xgO), which resides below the lamina, secretes multiple ligands to induce L5 differentiation in response to EGF from photoreceptors. By forcing neuronal differentiation in the lamina, we uncovered that though fated to die, the 'extra' precursor is specified as an L5. Therefore, two precursors are specified as L5s but only one differentiates during normal development. We found that the row of precursors nearest to xgO differentiate into L5s and, in turn, antagonise differentiation signalling to prevent the 'extra' precursors from differentiating, resulting in their death. Thus, an intricate interplay of glial signals and feedback from differentiating neurons defines an invariant and stereotyped pattern of neuronal differentiation and programmed cell death to ensure that lamina columns each contain exactly one L5 neuron

Data availability

All data generated or analysed during this study are included in the manuscript

Article and author information

Author details

  1. Anadika R Prasad

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Inês Lago-Baldaia

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Matthew P Bostock

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Zaynab Housseini

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Vilaiwan M Fernandes

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    For correspondence
    vilaiwan.fernandes@ucl.ac.uk
    Competing interests
    Vilaiwan M Fernandes, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1991-7252

Funding

Wellcome Trust (210472/Z/18/Z)

  • Vilaiwan M Fernandes

UCL Overseas Research Scholarship

  • Anadika R Prasad

UCL Graduate Research Scholarship

  • Anadika R Prasad

UCL Biosciences Graduate Research Scholarship

  • Matthew P Bostock

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sonia Sen, Tata Institute for Genetics and Society, India

Version history

  1. Preprint posted: December 14, 2021 (view preprint)
  2. Received: February 22, 2022
  3. Accepted: September 11, 2022
  4. Accepted Manuscript published: September 12, 2022 (version 1)
  5. Version of Record published: September 23, 2022 (version 2)

Copyright

© 2022, Prasad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,614
    views
  • 265
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anadika R Prasad
  2. Inês Lago-Baldaia
  3. Matthew P Bostock
  4. Zaynab Housseini
  5. Vilaiwan M Fernandes
(2022)
Differentiation signals from glia are fine-tuned to set neuronal numbers during development
eLife 11:e78092.
https://doi.org/10.7554/eLife.78092

Share this article

https://doi.org/10.7554/eLife.78092

Further reading

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    F Javier DeHaro-Arbona, Charalambos Roussos ... Sarah Bray
    Research Article

    Developmental programming involves the accurate conversion of signalling levels and dynamics to transcriptional outputs. The transcriptional relay in the Notch pathway relies on nuclear complexes containing the co-activator Mastermind (Mam). By tracking these complexes in real time, we reveal that they promote the formation of a dynamic transcription hub in Notch ON nuclei which concentrates key factors including the Mediator CDK module. The composition of the hub is labile and persists after Notch withdrawal conferring a memory that enables rapid reformation. Surprisingly, only a third of Notch ON hubs progress to a state with nascent transcription, which correlates with polymerase II and core Mediator recruitment. This probability is increased by a second signal. The discovery that target-gene transcription is probabilistic has far-reaching implications because it implies that stochastic differences in Notch pathway output can arise downstream of receptor activation.

    1. Developmental Biology
    Rieko Asai, Vivek N Prakash ... Takashi Mikawa
    Research Article

    Large-scale cell flow characterizes gastrulation in animal development. In amniote gastrulation, particularly in avian gastrula, a bilateral vortex-like counter-rotating cell flow, called ‘polonaise movements’, appears along the midline. Here, through experimental manipulations, we addressed relationships between the polonaise movements and morphogenesis of the primitive streak, the earliest midline structure in amniotes. Suppression of the Wnt/planar cell polarity (PCP) signaling pathway maintains the polonaise movements along a deformed primitive streak. Mitotic arrest leads to diminished extension and development of the primitive streak and maintains the early phase of the polonaise movements. Ectopically induced Vg1, an axis-inducing morphogen, generates the polonaise movements, aligned to the induced midline, but disturbs the stereotypical cell flow pattern at the authentic midline. Despite the altered cell flow, induction and extension of the primitive streak are preserved along both authentic and induced midlines. Finally, we show that ectopic axis-inducing morphogen, Vg1, is capable of initiating the polonaise movements without concomitant PS extension under mitotic arrest conditions. These results are consistent with a model wherein primitive streak morphogenesis is required for the maintenance of the polonaise movements, but the polonaise movements are not necessarily responsible for primitive streak morphogenesis. Our data describe a previously undefined relationship between the large-scale cell flow and midline morphogenesis in gastrulation.