Photoreceptors generate neuronal diversity in their target field through a Hedgehog morphogen gradient in Drosophila

  1. Matthew P Bostock
  2. Anadika R Prasad
  3. Alicia Donoghue
  4. Vilaiwan M Fernandes  Is a corresponding author
  1. University College London, United Kingdom

Abstract

Defining the origin of neuronal diversity is a major challenge in developmental neurobiology. The Drosophila visual system is an excellent paradigm to study how cellular diversity is generated. Photoreceptors from the eye disc grow their axons into the optic lobe and secrete Hedgehog (Hh) to induce the lamina, such that for every unit eye there is a corresponding lamina unit made up of post-mitotic precursors stacked into columns. Each differentiated column contains five lamina neuron types (L1-L5), making it the simplest neuropil in the optic lobe, yet how this diversity is generated was unknown. Here, we found that Hh pathway activity is graded along the distal-proximal axis of lamina columns and further determined that this gradient in pathway activity arises from a gradient of Hh ligand. We manipulated Hh pathway activity cell-autonomously in lamina precursors and non-cell autonomously by inactivating the Hh ligand, and by knocking it down in photoreceptors. These manipulations showed that different thresholds of activity specify unique cell identities, with more proximal cell types specified in response to progressively lower Hh levels. Thus, our data establish that Hh acts as a morphogen to pattern the lamina. Although, this is the first such report during Drosophila nervous system development, our work uncovers a remarkable similarity with the vertebrate neural tube, which is patterned by Sonic Hedgehog. Altogether, we show that differentiating neurons can regulate the neuronal diversity of their distant target fields through morphogen gradients.

Data availability

All data generated or analysed during this study are included in the manuscript

The following previously published data sets were used

Article and author information

Author details

  1. Matthew P Bostock

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  2. Anadika R Prasad

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Alicia Donoghue

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Vilaiwan M Fernandes

    Department of Cell and Developmental Biology, University College London, London, United Kingdom
    For correspondence
    vilaiwan.fernandes@ucl.ac.uk
    Competing interests
    Vilaiwan M Fernandes, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1991-7252

Funding

Wellcome Trust (210472/Z/18/Z)

  • Vilaiwan M Fernandes

University College London (Biosciences Graduate Research Scholarship)

  • Matthew P Bostock

University College London (Overseas Research Scholarship and Graduate Research Scholarship)

  • Anadika R Prasad

University College London (Research Opportunity Scholarship)

  • Alicia Donoghue

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Bostock et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,357
    views
  • 349
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew P Bostock
  2. Anadika R Prasad
  3. Alicia Donoghue
  4. Vilaiwan M Fernandes
(2022)
Photoreceptors generate neuronal diversity in their target field through a Hedgehog morphogen gradient in Drosophila
eLife 11:e78093.
https://doi.org/10.7554/eLife.78093

Share this article

https://doi.org/10.7554/eLife.78093

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Olivia B Taylor, Nicholas DeGroff ... Andy J Fischer
    Research Article

    The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.

    1. Developmental Biology
    Kayleigh Bozon, Hartmut Cuny ... Sally L Dunwoodie
    Research Article

    Congenital malformations can originate from numerous genetic or non-genetic factors but in most cases the causes are unknown. Genetic disruption of nicotinamide adenine dinucleotide (NAD) de novo synthesis causes multiple malformations, collectively termed Congenital NAD Deficiency Disorder (CNDD), highlighting the necessity of this pathway during embryogenesis. Previous work in mice shows that NAD deficiency perturbs embryonic development specifically when organs are forming. While the pathway is predominantly active in the liver postnatally, the site of activity prior to and during organogenesis is unknown. Here, we used a mouse model of human CNDD and assessed pathway functionality in embryonic livers and extraembryonic tissues via gene expression, enzyme activity and metabolic analyses. We found that the extra-embryonic visceral yolk sac endoderm exclusively synthesises NAD de novo during early organogenesis before the embryonic liver takes over this function. Under CNDD-inducing conditions, visceral yolk sacs had reduced NAD levels and altered NAD-related metabolic profiles, affecting embryo metabolism. Expression of requisite pathway genes is conserved in the equivalent yolk sac cell type in humans. Our findings show that visceral yolk sac-mediated NAD de novo synthesis activity is essential for mouse embryogenesis and its perturbation causes CNDD. As mouse and human yolk sacs are functionally homologous, our data improve the understanding of human congenital malformation causation.