Oscillations support short latency co-firing of neurons during human episodic memory formation
Abstract
Theta and gamma oscillations in the medial temporal lobe are suggested to play a critical role for human memory formation via establishing synchrony in neural assemblies. Arguably, such synchrony facilitates efficient information transfer between neurons and enhances synaptic plasticity, both of which benefit episodic memory formation. However, to date little evidence exists from humans that would provide direct evidence for such a specific role of theta and gamma oscillations for episodic memory formation. Here we investigate how oscillations shape the temporal structure of neural firing during memory formation in the medial temporal lobe. We measured neural firing and local field potentials in human epilepsy patients via micro-wire electrode recordings to analyze whether brain oscillations are related to co-incidences of firing between neurons during successful and unsuccessful encoding of episodic memories. The results show that phase-coupling of neurons to faster theta and gamma oscillations correlates with co-firing at short latencies (~20-30 ms) and occurs during successful memory formation. Phase-coupling at slower oscillations in these same frequency bands, in contrast, correlates with longer co-firing latencies and occurs during memory failure. Thus, our findings suggest that neural oscillations play a role for the synchronization of neural firing in the medial temporal lobe during the encoding of episodic memories.
Data availability
All code used for data analysis and visualization of results is deposited here: https://osf.io/fngz8/
Article and author information
Author details
Funding
European Research Council (647954)
- Simon Hanslmayr
Economic and Social Research Council (ES/R010072/1)
- Simon Hanslmayr
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Informed consent to participate in the experiments and consent to publish the results was obtained from the patients prior to data collection. Ethical approvals were given by National Research Ethics Service (NRES), Research Ethics Committee (Nr. 15/WM/0219), the ethical review board of the Friedrich-Alexander Universität Erlangen-Nürnberg (Nr. 124_12 B), and the Medical Ethical Review board of the Vrije Universiteit Medisch Centrum (Nr. NL55554.029.15), for Birmingham, Erlangen and Amsterdam respectively.
Copyright
© 2022, Roux et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,786
- views
-
- 251
- downloads
-
- 20
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Studying and understanding the code of large neural populations hinge on accurate statistical models of population activity. A novel class of models, based on learning to weigh sparse nonlinear Random Projections (RP) of the population, has demonstrated high accuracy, efficiency, and scalability. Importantly, these RP models have a clear and biologically plausible implementation as shallow neural networks. We present a new class of RP models that are learned by optimizing the randomly selected sparse projections themselves. This ‘reshaping’ of projections is akin to changing synaptic connections in just one layer of the corresponding neural circuit model. We show that Reshaped RP models are more accurate and efficient than the standard RP models in recapitulating the code of tens of cortical neurons from behaving monkeys. Incorporating more biological features and utilizing synaptic normalization in the learning process, results in accurate models that are more efficient. Remarkably, these models exhibit homeostasis in firing rates and total synaptic weights of projection neurons. We further show that these sparse homeostatic reshaped RP models outperform fully connected neural network models. Thus, our new scalable, efficient, and highly accurate population code models are not only biologically plausible but are actually optimized due to their biological features. These findings suggest a dual functional role of synaptic normalization in neural circuits: maintaining spiking and synaptic homeostasis while concurrently optimizing network performance and efficiency in encoding information and learning.
-
- Neuroscience
Structural hemispheric asymmetry has long been assumed to guide functional lateralization of the human brain, but empirical evidence for this compelling hypothesis remains scarce. Recently, it has been suggested that microstructural asymmetries may be more relevant to functional lateralization than macrostructural asymmetries. To investigate the link between microstructure and function, we analyzed multimodal MRI data in 907 right-handed participants. We quantified structural asymmetry and functional lateralization of the planum temporale (PT), a cortical area crucial for auditory-language processing. We found associations between PT functional lateralization and several structural asymmetries, such as surface area, intracortical myelin content, neurite density, and neurite orientation dispersion. The PT structure also showed hemispheric-specific coupling with its functional activity. All these functional-structural associations are highly specific to within-PT functional activity during auditory-language processing. These results suggest that structural asymmetry underlies functional lateralization of the same brain area and highlights a critical role of microstructural PT asymmetries in auditory-language processing.