Human WDR5 promotes breast cancer growth and metastasis via KMT2-independent translation regulation

  1. Wesley L Cai
  2. Jocelyn Fang-Yi Chen
  3. Huacui Chen
  4. Emily Wingrove
  5. Sarah J Kurley
  6. Lok Hei Chan
  7. Meiling Zhang
  8. Anna Arnal-Estape
  9. Minghui Zhao
  10. Amer Balabaki
  11. Wenxue Li
  12. Xufen Yu
  13. Ethan D Krop
  14. Yali Dou
  15. Yansheng Liu
  16. Jian Jin
  17. Thomas F Westbrook
  18. Don X Nguyen  Is a corresponding author
  19. Qin Yan  Is a corresponding author
  1. University of Pittsburgh Medical Center, United States
  2. Yale University, United States
  3. Baylor College of Medicine, United States
  4. Icahn School of Medicine at Mount Sinai, United States
  5. University of Southern California, United States

Abstract

Metastatic breast cancer remains a major cause of cancer related deaths in women and there are few effective therapies against this advanced disease. Emerging evidence suggests that key steps of tumor progression and metastasis are controlled by reversible epigenetic mechanisms. Using an in vivo genetic screen, we identified WDR5 as an actionable epigenetic regulator that is required for metastatic progression in models of triple-negative breast cancer. We found that knockdown of WDR5 in breast cancer cells independently impaired their tumorigenic as well as metastatic capabilities. Mechanistically, WDR5 promotes cell growth by increasing ribosomal gene expression and translation efficiency in a KMT2-independent manner. Consistently, pharmacological inhibition or degradation of WDR5 impedes cellular translation rate and the clonogenic ability of breast cancer cells. Furthermore, combination of WDR5-targeting with mTOR inhibitors leads to potent suppression of translation and proliferation of breast cancer cells. These results reveal novel therapeutic strategies to treat metastatic breast cancer.

Data availability

RNA-seq data have been deposited into the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus database under GSE196666. Reviewer token: qhqpeackxnebvqn.

The following data sets were generated

Article and author information

Author details

  1. Wesley L Cai

    Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  2. Jocelyn Fang-Yi Chen

    Department of Pathology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7281-8686
  3. Huacui Chen

    Department of Pathology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  4. Emily Wingrove

    Department of Pathology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  5. Sarah J Kurley

    Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  6. Lok Hei Chan

    Department of Pathology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  7. Meiling Zhang

    Department of Pathology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  8. Anna Arnal-Estape

    Department of Pathology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0490-7040
  9. Minghui Zhao

    Department of Pathology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  10. Amer Balabaki

    Department of Pathology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1509-886X
  11. Wenxue Li

    Department of Pharmacology, Yale University, West Haven, United States
    Competing interests
    No competing interests declared.
  12. Xufen Yu

    Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7794-7890
  13. Ethan D Krop

    Department of Pathology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  14. Yali Dou

    Department of Medicine, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  15. Yansheng Liu

    Department of Pharmacology, Yale University, West Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2626-3912
  16. Jian Jin

    Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States
    Competing interests
    Jian Jin, . The Jin laboratory received research funds un-related to this study from Celgene Corporation, Levo Therapeutics, Inc., Cullgen, Inc. and Cullinan Oncology, Inc. J.J. is a cofounder, scientific advisory board member and equity shareholder in Cullgen, Inc. and a consultant for Cullgen, Inc., EpiCypher, Inc. and Accent Therapeutics, Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2387-3862
  17. Thomas F Westbrook

    Department of Molecular and Human Genetics, Baylor College of Medicine, Boston, United States
    Competing interests
    No competing interests declared.
  18. Don X Nguyen

    Department of Pathology, Yale University, New Haven, United States
    For correspondence
    don.nguyen@yale.edu
    Competing interests
    Don X Nguyen, has received research funding un-related to this study from AstraZeneca Inc..
  19. Qin Yan

    Department of Pathology, Yale University, New Haven, United States
    For correspondence
    qin.yan@yale.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4077-453X

Funding

National Science Foundation (Graduate Research FellowshipDGE-1122492)

  • Wesley L Cai

National Cancer Institute (F31CA243295)

  • Jocelyn Fang-Yi Chen

Congressionally Directed Medical Research Programs (W81XWH-15-1-0117 and W81XWH-21-1-0411)

  • Qin Yan

National Cancer Institute (R01CA237586)

  • Qin Yan

National Cancer Institute (R01CA166376)

  • Don X Nguyen

National Cancer Institute (P30CA016359)

  • Qin Yan

Yale Cancer Center (Class of '61 Cancer Research Award)

  • Qin Yan

Yale Cancer Center (Class of '61 Cancer Research Award)

  • Don X Nguyen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures have been approved by the Institutional Animal Care and Use Committee of Yale University under animal protocol 2021-11286.

Copyright

© 2022, Cai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,504
    views
  • 544
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wesley L Cai
  2. Jocelyn Fang-Yi Chen
  3. Huacui Chen
  4. Emily Wingrove
  5. Sarah J Kurley
  6. Lok Hei Chan
  7. Meiling Zhang
  8. Anna Arnal-Estape
  9. Minghui Zhao
  10. Amer Balabaki
  11. Wenxue Li
  12. Xufen Yu
  13. Ethan D Krop
  14. Yali Dou
  15. Yansheng Liu
  16. Jian Jin
  17. Thomas F Westbrook
  18. Don X Nguyen
  19. Qin Yan
(2022)
Human WDR5 promotes breast cancer growth and metastasis via KMT2-independent translation regulation
eLife 11:e78163.
https://doi.org/10.7554/eLife.78163

Share this article

https://doi.org/10.7554/eLife.78163

Further reading

    1. Cancer Biology
    2. Cell Biology
    Maojin Tian, Le Yang ... Peiqing Zhao
    Research Article

    TIPE (TNFAIP8) has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma. We found that TIPE-induced PKM2 dimerization, thereby facilitating its translocation from the cytoplasm to the nucleus. TIPE-mediated PKM2 dimerization consequently promoted HIF-1α activation and glycolysis, which contributed to melanoma progression and increased its stemness features. Notably, TIPE specifically phosphorylated PKM2 at Ser 37 in an extracellular signal-regulated kinase (ERK)-dependent manner. Consistently, the expression of TIPE was positively correlated with the levels of PKM2 Ser37 phosphorylation and cancer stem cell (CSC) markers in melanoma tissues from clinical samples and tumor bearing mice. In summary, our findings indicate that the TIPE/PKM2/HIF-1α signaling pathway plays a pivotal role in promoting CSC properties by facilitating the glycolysis, which would provide a promising therapeutic target for melanoma intervention.

    1. Cancer Biology
    Yiwei Huang, Gujie Wu ... Cheng Zhan
    Research Article

    Chemotherapy is widely used to treat lung adenocarcinoma (LUAD) patients comprehensively. Considering the limitations of chemotherapy due to drug resistance and other issues, it is crucial to explore the impact of chemotherapy and immunotherapy on these aspects. In this study, tumor samples from nine LUAD patients, of which four only received surgery and five received neoadjuvant chemotherapy, were subjected to scRNA-seq analysis. In vitro and in vivo assays, including flow cytometry, immunofluorescence, Seahorse assay, and tumor xenograft models, were carried out to validate our findings. A total of 83,622 cells were enrolled for subsequent analyses. The composition of cell types exhibited high heterogeneity across different groups. Functional enrichment analysis revealed that chemotherapy drove significant metabolic reprogramming in tumor cells and macrophages. We identified two subtypes of macrophages: Anti-mac cells (CD45+CD11b+CD86+) and Pro-mac cells (CD45+CD11b+ARG +) and sorted them by flow cytometry. The proportion of Pro-mac cells in LUAD tissues increased significantly after neoadjuvant chemotherapy. Pro-mac cells promote tumor growth and angiogenesis and also suppress tumor immunity. Moreover, by analyzing the remodeling of T and B cells induced by neoadjuvant therapy, we noted that chemotherapy ignited a relatively more robust immune cytotoxic response toward tumor cells. Our study demonstrates that chemotherapy induces metabolic reprogramming within the tumor microenvironment of LUAD, particularly affecting the function and composition of immune cells such as macrophages and T cells. We believe our findings will offer insight into the mechanisms of drug resistance and provide novel therapeutic targets for LUAD in the future.