The generation of HepG2 transmitochondrial cybrids to reveal the role of mitochondrial genotype in idiosyncratic drug-induced liver injury: a translational in vitro study

  1. Amy Louise Ball
  2. Carol Elizabeth Jolly
  3. Mark G Lennon
  4. Jonathan J Lyon
  5. Ana Alfirevic
  6. Amy E Chadwick  Is a corresponding author
  1. University of Liverpool, United Kingdom
  2. GlaxoSmithKline, United Kingdom

Abstract

Background: Evidence supports an important link between mitochondrial DNA (mtDNA) variation and adverse drug reactions such as idiosyncratic drug-induced liver injury (iDILI). Here, we describe the generation of HepG2-derived transmitochondrial cybrids, to investigate the impact of mtDNA variation on mitochondrial (dys)function and susceptibility to iDILI. This study created 10 cybrid cell lines, each containing distinct mitochondrial genotypes of haplogroup H or haplogroup J backgrounds.

Methods: HepG2 cells were depleted of mtDNA to make rho zero cells, before the introduction of known mitochondrial genotypes using platelets from healthy volunteers (n=10), thus generating 10 transmitochondrial cybrid cell lines. The mitochondrial function of each was assessed at basal state and following treatment with compounds associated with iDILI; flutamide, 2-hydroxyflutamide, and tolcapone, and their less toxic counterparts bicalutamide and entacapone utilising ATP assays and extracellular flux analysis.

Findings: Whilst only slight variations in basal mitochondrial function were observed between haplogroups H and J, haplogroup-specific responses were observed to the mitotoxic drugs. Haplogroup J showed increased susceptibility to inhibition by flutamide, 2-hydroxyflutamide and tolcapone, via effects on selected mitochondrial complexes (I and II), and an uncoupling of the respiratory chain.

Conclusions: This study demonstrates that HepG2 transmitochondrial cybrids can be created to contain the mitochondrial genotype of any individual of interest. This provides a practical and reproducible system to investigate the cellular consequences of variation in the mitochondrial genome, against a constant nuclear background. Additionally, the results show that inter-individual variation in mitochondrial haplogroup may be a factor in determining sensitivity to mitochondrial toxicants.

Funding: This work was supported by the Centre for Drug Safety Science supported by the Medical Research Council, United Kingdom (Grant Number G0700654); and GlaxoSmithKline as part of an MRC-CASE studentship (grant number MR/L006758/1).

Data availability

Source Data files have been provided for Figures 2, 3, 4, 5, 6 and supplementary figures s1, s3, s4, s5, s6

The following previously published data sets were used

Article and author information

Author details

  1. Amy Louise Ball

    Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    Amy Louise Ball, holds a grant from GlaxoSmithKline (GSK) for this work. The author has no other competing interests to declare..
  2. Carol Elizabeth Jolly

    Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    Carol Elizabeth Jolly, salary funded by Janssen Pharmaceutical, paid to University of Liverpool. The author has no other competing interests to declare..
  3. Mark G Lennon

    GlaxoSmithKline, Ware, United Kingdom
    Competing interests
    Mark G Lennon, is an employee of GlaxoSmithKline (GSK)..
  4. Jonathan J Lyon

    GlaxoSmithKline, Ware, United Kingdom
    Competing interests
    Jonathan J Lyon, is an employee of GlaxoSmithKline (GSK). Unpaid role as a member of the Investigative Toxicology Leaders Forum (ITLF) representing GSK on this group. Provides unpaid consultation to Cambridge University in areas of drug development. The author has no other competing interests to declare..
  5. Ana Alfirevic

    Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    Ana Alfirevic, holds a grant from GlaxoSmithKline (GSK) for this work. The author has no other competing interests to declare..
  6. Amy E Chadwick

    Department Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
    For correspondence
    Aemercer@liverpool.ac.uk
    Competing interests
    Amy E Chadwick, holds a grant from GlaxoSmithKline (GSK) for this work and received other funding from Janssen in 2017-2020 (paid directly to University of Liverpool). The author has no other competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7399-8655

Funding

Medical Research Council (Centre for Drug Safety Science,G0700654)

  • Carol Elizabeth Jolly
  • Amy E Chadwick

GlaxoSmithKline (MRC-CASE studentship,grant number MR/L006758/1))

  • Amy Louise Ball

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ilse S Daehn, Icahn School of Medicine at Mount Sinai, United States

Ethics

Human subjects: This work with human material in this project was approved by the North West of England Research Ethics Committee and all participants gave written informed consent and consent to publish. All procedures were in accordance with the ethical standards of the North West of England Research Ethics Committee (Cell Archive of HLA Typed Healthy Volunteers (HLA), CRN ID 7787, IRAS ID: 15623) with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Version history

  1. Received: February 25, 2022
  2. Preprint posted: March 22, 2022 (view preprint)
  3. Accepted: June 5, 2023
  4. Accepted Manuscript published: June 6, 2023 (version 1)
  5. Version of Record published: June 15, 2023 (version 2)

Copyright

© 2023, Ball et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 758
    views
  • 116
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amy Louise Ball
  2. Carol Elizabeth Jolly
  3. Mark G Lennon
  4. Jonathan J Lyon
  5. Ana Alfirevic
  6. Amy E Chadwick
(2023)
The generation of HepG2 transmitochondrial cybrids to reveal the role of mitochondrial genotype in idiosyncratic drug-induced liver injury: a translational in vitro study
eLife 12:e78187.
https://doi.org/10.7554/eLife.78187

Share this article

https://doi.org/10.7554/eLife.78187

Further reading

    1. Medicine
    Vitaly Ryu, Anisa Azatovna Gumerova ... Mone Zaidi
    Tools and Resources

    There is clear evidence that the sympathetic nervous system (SNS) mediates bone metabolism. Histological studies show abundant SNS innervation of the periosteum and bone marrow-these nerves consist of noradrenergic fibers that immunostain for tyrosine hydroxylase, dopamine beta hydroxylase, or neuropeptide Y. Nonetheless, the brain sites that send efferent SNS outflow to bone have not yet been characterized. Using pseudorabies (PRV) viral transneuronal tracing, we report, for the first time, the identification of central SNS outflow sites that innervate bone. We find that the central SNS outflow to bone originates from 87 brain nuclei, sub-nuclei and regions of six brain divisions, namely the midbrain and pons, hypothalamus, hindbrain medulla, forebrain, cerebral cortex, and thalamus. We also find that certain sites, such as the raphe magnus (RMg) of the medulla and periaqueductal gray (PAG) of the midbrain, display greater degrees of PRV152 infection, suggesting that there is considerable site-specific variation in the levels of central SNS outflow to bone. This comprehensive compendium illustrating the central coding and control of SNS efferent signals to bone should allow for a greater understanding of the neural regulation of bone metabolism, and importantly and of clinical relevance, mechanisms for central bone pain.

    1. Computational and Systems Biology
    2. Medicine
    Zachary Shaffer, Roberto Romero ... Nardhy Gomez-Lopez
    Research Article

    Background:

    Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB.

    Methods:

    Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations.

    Results:

    Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB.

    Conclusions:

    The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes.

    Funding:

    This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.