Timely coupling of sleep spindles and slow waves is linked to early amyloid-β burden and predicts memory decline
Abstract
Sleep alteration is a hallmark of ageing and emerges as a risk factor for Alzheimer's disease (AD). While the fine-tuned coalescence of sleep microstructure elements may influence age-related cognitive trajectories, its association with AD processes is not fully established. Here, we investigated whether the coupling of spindles and slow waves is associated with early amyloid-beta (Aβ) brain burden, a hallmark of AD neuropathology, and cognitive change over 2 years in 100 healthy individuals in late-midlife (50-70y; 68 women). We found that, in contrast to other sleep metrics, earlier occurrence of spindles on slow-depolarisation slow waves is associated with higher medial prefrontal cortex Aβ burden (p=0.014, r²β*=0.06), and is predictive of greater longitudinal memory decline in a large subsample (p=0.032, r²β*=0.07, N=66). These findings unravel early links between sleep, AD-related processes and cognition and suggest that altered coupling of sleep microstructure elements, key to its mnesic function, contributes to poorer brain and cognitive trajectories in ageing.
Data availability
The data and analysis scripts supporting the results included in this manuscript are publicly available via the following open repository: https://gitlab.uliege.be/CyclotronResearchCentre/Public/fasst/slow-wave-spindle-coupling-and-amyloid. We used Matlab script for MRI and PET data processing and to detect slow waves and spindles as well as their coupling, while we used SAS for statistical analyses. The raw data could be identified and linked to a single subject and represent a huge amount of data (> 200 Gb). Researchers willing to access the raw data should send a request to the corresponding author (GV). Data sharing will require evaluation of the request by the Medicine Faculty-Hostpital Ethic Committee of the University of Liège, Belgium and the signature of a data transfer agreement (DTA).
Article and author information
Author details
Funding
Fonds De La Recherche Scientifique - FNRS (FRSM 3.4516.11)
- Gilles Vandewalle
Fédération Wallonie-Bruxelles (ARC-SLEEPDEM 17/09)
- Daphne Chylinski
- Maxime Van Egroo
- Justinas Narbutas
- Christine Bastin
- Christophe Phillips
- Fabienne Collette
- Pierre Maquet
- Gilles Vandewalle
European Regional Development Fund (RAdiomed)
- Daphne Chylinski
- Maxime Van Egroo
- Justinas Narbutas
- Vincenzo Muto
- Mohamed Ali Bahri
- Eric Salmon
- Christine Bastin
- Christophe Phillips
- Fabienne Collette
- Pierre Maquet
- Gilles Vandewalle
Canadian Institutes of Health Research (grant number 190750)
- Julie Carrier
- Jean-Marc Lina
General Electric (ISS290)
- Eric Salmon
- Christine Bastin
- Christophe Phillips
- Fabienne Collette
- Pierre Maquet
- Gilles Vandewalle
Fonds De La Recherche Scientifique - FNRS
- Maxime Van Egroo
- Christine Bastin
- Christophe Phillips
- Fabienne Collette
- Gilles Vandewalle
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: The study was registered with EudraCT 2016-001436-35. All procedures were approved by the Hospital-Faculty Ethics Committee of ULiège. All participants signed an informed consent prior to participating in the study.
Copyright
© 2022, Chylinski et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,693
- views
-
- 452
- downloads
-
- 27
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Sour taste, which is elicited by low pH, may serve to help animals distinguish appetitive from potentially harmful food sources. In all species studied to date, the attractiveness of oral acids is contingent on concentration. Many carboxylic acids are attractive at ecologically relevant concentrations but become aversive beyond some maximal concentration. Recent work found that Drosophila ionotropic receptors IR25a and IR76b expressed by sweet-responsive gustatory receptor neurons (GRNs) in the labellum, a peripheral gustatory organ, mediate appetitive feeding behaviors toward dilute carboxylic acids. Here, we disclose the existence of pharyngeal sensors in Drosophila melanogaster that detect ingested carboxylic acids and are also involved in the appetitive responses to carboxylic acids. These pharyngeal sensors rely on IR51b, IR94a, and IR94h, together with IR25a and IR76b, to drive responses to carboxylic acids. We then demonstrate that optogenetic activation of either Ir94a+ or Ir94h+ GRNs promotes an appetitive feeding response, confirming their contributions to appetitive feeding behavior. Our discovery of internal pharyngeal sour taste receptors opens up new avenues for investigating the internal sensation of tastants in insects.
-
- Neuroscience
Time estimation is an essential prerequisite underlying various cognitive functions. Previous studies identified ‘sequential firing’ and ‘activity ramps’ as the primary neuron activity patterns in the medial frontal cortex (mPFC) that could convey information regarding time. However, the relationship between these patterns and the timing behavior has not been fully understood. In this study, we utilized in vivo calcium imaging of mPFC in rats performing a timing task. We observed cells that showed selective activation at trial start, end, or during the timing interval. By aligning long-term time-lapse datasets, we discovered that sequential patterns of time coding were stable over weeks, while cells coding for trial start or end showed constant dynamism. Furthermore, with a novel behavior design that allowed the animal to determine individual trial interval, we were able to demonstrate that real-time adjustment in the sequence procession speed closely tracked the trial-to-trial interval variations. And errors in the rats’ timing behavior can be primarily attributed to the premature ending of the time sequence. Together, our data suggest that sequential activity maybe a stable neural substrate that represents time under physiological conditions. Furthermore, our results imply the existence of a unique cell type in the mPFC that participates in the time-related sequences. Future characterization of this cell type could provide important insights in the neural mechanism of timing and related cognitive functions.