The KASH5 protein involved in meiotic chromosomal movements is a novel dynein activating adaptor

  1. Ritvija Agrawal
  2. John P Gillies
  3. Juliana L Zang
  4. Jingjing Zhang
  5. Sharon R Garrott
  6. Hiroki Shibuya  Is a corresponding author
  7. Jayakrishnan Nandakumar  Is a corresponding author
  8. Morgan E DeSantis  Is a corresponding author
  1. University of Michigan-Ann Arbor, United States
  2. University of Gothenburg, Sweden

Abstract

Dynein harnesses ATP hydrolysis to move cargo on microtubules in multiple biological contexts. Dynein meets a unique challenge in meiosis by moving chromosomes tethered to the nuclear envelope to facilitate homolog pairing essential for gametogenesis. Though processive dynein motility requires binding to an activating adaptor, the identity of the activating adaptor required for dynein to move meiotic chromosomes is unknown. We show that the meiosis-specific nuclear-envelope protein KASH5 is a dynein activating adaptor: KASH5 directly binds dynein using a mechanism conserved among activating adaptors and converts dynein into a processive motor. We map the dynein-binding surface of KASH5, identifying mutations that abrogate dynein binding in vitro and disrupt recruitment of the dynein machinery to the nuclear envelope in cultured cells and mouse spermatocytes in vivo. Our study identifies KASH5 as the first transmembrane dynein activating adaptor and provides molecular insights into how it activates dynein during meiosis.

Data availability

Source data for TIRF experiments in Figure 3-6 are found in the file "Agrawal_etal_Source data" and labeled appropriately.All custom macros written for this study (used in Figure 5) are available on GitHub (https://github.com/DeSantis-Lab/Nuclear_Envelope_Localization_Macros)

The following data sets were generated

Article and author information

Author details

  1. Ritvija Agrawal

    Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. John P Gillies

    Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Juliana L Zang

    Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5738-8355
  4. Jingjing Zhang

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Sharon R Garrott

    Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Hiroki Shibuya

    Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
    For correspondence
    hiroki.shibuya@gu.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3400-0741
  7. Jayakrishnan Nandakumar

    Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    For correspondence
    jknanda@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
  8. Morgan E DeSantis

    Department of Molecular, Cellular and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
    For correspondence
    mdesant@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4096-8548

Funding

National Institutes of Health (R00-GM127757)

  • Morgan E DeSantis

National Institutes of Health (R01-GM120094)

  • Jayakrishnan Nandakumar

American Heart Association (RSG-17-037-01-DMC)

  • Jayakrishnan Nandakumar

European Research Council (StG-801659)

  • Hiroki Shibuya

Swedish Research Council (2018-03426)

  • Hiroki Shibuya

Knut och Alice Wallenbergs Stiftelse (KAW2019.0180)

  • Hiroki Shibuya

American Heart Association

  • Ritvija Agrawal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were approved by and performed in compliance with the regulations at the University of Gothenburg Institutional Animal Care and Use Committee (#1316/18).

Copyright

© 2022, Agrawal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,761
    views
  • 450
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ritvija Agrawal
  2. John P Gillies
  3. Juliana L Zang
  4. Jingjing Zhang
  5. Sharon R Garrott
  6. Hiroki Shibuya
  7. Jayakrishnan Nandakumar
  8. Morgan E DeSantis
(2022)
The KASH5 protein involved in meiotic chromosomal movements is a novel dynein activating adaptor
eLife 11:e78201.
https://doi.org/10.7554/eLife.78201

Share this article

https://doi.org/10.7554/eLife.78201

Further reading

    1. Cell Biology
    2. Neuroscience
    Lizbeth de La Cruz, Derek Bui ... Oscar Vivas
    Research Article

    Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.

    1. Cell Biology
    2. Neuroscience
    Anne Drougard, Eric H Ma ... John Andrew Pospisilik
    Research Article

    Chronic high-fat feeding triggers metabolic dysfunction including obesity, insulin resistance, and diabetes. How high-fat intake first triggers these pathophysiological states remains unknown. Here, we identify an acute microglial metabolic response that rapidly translates intake of high-fat diet (HFD) to a surprisingly beneficial effect on metabolism and spatial/learning memory. High-fat intake rapidly increases palmitate levels in cerebrospinal fluid and triggers a wave of microglial metabolic activation characterized by mitochondrial membrane activation and fission as well as metabolic skewing toward aerobic glycolysis. These effects are detectable throughout the brain and can be detected within as little as 12 hr of HFD exposure. In vivo, microglial ablation and conditional DRP1 deletion show that the microglial metabolic response is necessary for the acute effects of HFD. 13C-tracing experiments reveal that in addition to processing via β-oxidation, microglia shunt a substantial fraction of palmitate toward anaplerosis and re-release of bioenergetic carbons into the extracellular milieu in the form of lactate, glutamate, succinate, and intriguingly, the neuroprotective metabolite itaconate. Together, these data identify microglia as a critical nutrient regulatory node in the brain, metabolizing away harmful fatty acids and liberating the same carbons as alternate bioenergetic and protective substrates for surrounding cells. The data identify a surprisingly beneficial effect of short-term HFD on learning and memory.