Contribution of Trp63CreERT2 labeled cells to alveolar regeneration is independent of tuft cells

  1. Huachao Huang
  2. Yinshan Fang
  3. Ming Jiang
  4. Yihan Zhang
  5. Jana Biermann
  6. Johannes C Melms
  7. Jennifer A Danielsson
  8. Ying Yang
  9. Li Qiang
  10. Jia Liu
  11. Yiwu Zhou
  12. Manli Wang
  13. Zhihong Hu
  14. Timothy C Wang
  15. Anjali Saqi
  16. Jie Sun
  17. Ichiro Matsumoto
  18. Wellington V Cardoso
  19. Charles W Emala
  20. Jian Zhu
  21. Benjamin Izar
  22. Hongmei Mou  Is a corresponding author
  23. Jianwen Que  Is a corresponding author
  1. Columbia University Medical Center, United States
  2. Zhejiang University, China
  3. Massachusetts General Hospital, United States
  4. Stanford University, United States
  5. Wuhan Institute of Virology, China
  6. Huazhong University of Science and Technology, China
  7. University of Virginia, United States
  8. Monell Chemical Senses Center, United States
  9. The Ohio State University, United States

Abstract

Viral infection often causes severe damage to the lungs, leading to the appearance of ectopic basal cells (EBCs) and tuft cells in the lung parenchyma. Thus far the roles of these ectopic epithelial cells in alveolar regeneration remain controversial. Here, we confirm that the ectopic tuft cells are originated from EBCs in mouse models and COVID-19 lungs. The differentiation of tuft cells from EBCs is promoted by Wnt inhibition while suppressed by Notch inhibition. Although progenitor functions have been suggested in other organs, pulmonary tuft cells don't proliferate or give rise to other cell lineages. Consistent with previous reports, Trp63CreERT2 and KRT5-CreERT2 labeled ectopic EBCs do not exhibit alveolar regeneration potential. Intriguingly, when tamoxifen was administrated post viral infection, Trp63CreERT2 but not KRT5-CreERT2 labels islands of alveolar epithelial cells that are negative for EBC biomarkers. Furthermore, germline deletion of Trpm5 significantly increases the contribution of Trp63CreERT2 labeled cells to the alveolar epithelium. Although Trpm5 is known to regulate tuft cell development, complete ablation of tuft cell production fails to improve alveolar regeneration in Pou2f3-/- mice, implying that Trpm5 promotes alveolar epithelial regeneration through a mechanism independent of tuft cells.

Data availability

Data Availability: All data are available in the main text or the supplementary materials and deposited toDryad (doi:10.5061/dryad.0vt4b8h1w)

The following data sets were generated

Article and author information

Author details

  1. Huachao Huang

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yinshan Fang

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ming Jiang

    Institute of Genetics, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yihan Zhang

    Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jana Biermann

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8907-4633
  6. Johannes C Melms

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5410-6586
  7. Jennifer A Danielsson

    Department of Anesthesiology, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ying Yang

    Program in Epithelial Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4197-6216
  9. Li Qiang

    Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8322-1797
  10. Jia Liu

    State Key Laboratory of Virology, Wuhan Institute of Virology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  11. Yiwu Zhou

    Department of Forensic Medicine, Huazhong University of Science and Technology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  12. Manli Wang

    State Key Laboratory of Virology, Wuhan Institute of Virology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
  13. Zhihong Hu

    State Key Laboratory of Virology, Wuhan Institute of Virology, Wuhan, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1560-0928
  14. Timothy C Wang

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Anjali Saqi

    Department of Pathology and Cell Biology, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Jie Sun

    Carter Immunology Center, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Ichiro Matsumoto

    Monell Chemical Senses Center, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Wellington V Cardoso

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8868-9716
  19. Charles W Emala

    Department of Anesthesiology, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Jian Zhu

    Department of Pathology, The Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Benjamin Izar

    Department of Medicine, Columbia University Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2379-6702
  22. Hongmei Mou

    Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, United States
    For correspondence
    HMOU@mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  23. Jianwen Que

    Department of Medicine, Columbia University Medical Center, New York, United States
    For correspondence
    jq2240@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6540-6701

Funding

National Heart, Lung, and Blood Institute (R01HL152293)

  • Jianwen Que

National Heart, Lung, and Blood Institute (R01HL159675)

  • Jianwen Que

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK120650)

  • Jianwen Que

National Institute of Diabetes and Digestive and Kidney Diseases (R01DK100342)

  • Jianwen Que

Cystic Fibrosis Foundation (MOU19G0)

  • Hongmei Mou

Harvard Stem Cell Institute (SG-0120-19-00)

  • Hongmei Mou

Charles H. Hood Foundation

  • Hongmei Mou

U.S. Department of Defense (W81XWH-21-1-0196)

  • Huachao Huang

National Institute of Allergy and Infectious Diseases (R21AI163753)

  • Huachao Huang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies used a minimum of three mice per group. Mouse studies were approved by Columbia University Medical Center Institutional Animal Care and Use Committees (Approval protocol number AC-AABM6565).

Copyright

© 2022, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,493
    views

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.78217

Further reading

    1. Cancer Biology
    2. Cell Biology
    Salam Dabsan, Gali Zur ... Aeid Igbaria
    Research Article

    The endoplasmic reticulum (ER) is an essential sensing organelle responsible for the folding and secretion of almost one-third of eukaryotic cells' total proteins. However, environmental, chemical, and genetic insults often lead to protein misfolding in the ER, accumulating misfolded proteins, and causing ER stress. To solve this, several mechanisms were reported to relieve ER stress by decreasing the ER protein load. Recently, we reported a novel ER surveillance mechanism by which proteins from the secretory pathway are refluxed to the cytosol to relieve the ER of its content. The refluxed proteins gain new prosurvival functions in cancer cells, thereby increasing cancer cell fitness. We termed this phenomenon ER to CYtosol Signaling (or ‘ERCYS’). Here, we found that in mammalian cells, ERCYS is regulated by DNAJB12, DNAJB14, and the HSC70 cochaperone SGTA. Mechanistically, DNAJB12 and DNAJB14 bind HSC70 and SGTA - through their cytosolically localized J-domains to facilitate ER-protein reflux. DNAJB12 is necessary and sufficient to drive this phenomenon to increase AGR2 reflux and inhibit wt-p53 during ER stress. Mutations in DNAJB12/14 J-domain prevent the inhibitory interaction between AGR2-wt-p53. Thus, targeting the DNAJB12/14-HSC70/SGTA axis is a promising strategy to inhibit ERCYS and impair cancer cell fitness.

    1. Cancer Biology
    2. Cell Biology
    Brooke A Conti, Leo Novikov ... Mariano Oppikofer
    Research Article

    DNA base lesions, such as incorporation of uracil into DNA or base mismatches, can be mutagenic and toxic to replicating cells. To discover factors in repair of genomic uracil, we performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluorouracil into DNA. We identified known factors, such as uracil DNA N-glycosylase (UNG), and unknown factors, such as the N6-adenosine methyltransferase, METTL3, as required to overcome floxuridine-driven cytotoxicity. Visualized with immunofluorescence, the product of METTL3 activity, N6-methyladenosine, formed nuclear foci in cells treated with floxuridine. The observed N6-methyladenosine was embedded in DNA, called 6mA, and these results were confirmed using an orthogonal approach, liquid chromatography coupled to tandem mass spectrometry. METTL3 and 6mA were required for repair of lesions driven by additional base-damaging agents, including raltitrexed, gemcitabine, and hydroxyurea. Our results establish a role for METTL3 and 6mA in promoting genome stability in mammalian cells, especially in response to base damage.