Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila

  1. Hilary Scott
  2. Boris Novikov
  3. Berrak Ugur
  4. Brooke Allen
  5. Ilya Mertsalov
  6. Pedro Monagas-Valentin
  7. Melissa Koff
  8. Sarah Baas Robinson
  9. Kazuhiro Aoki
  10. Raisa Veizaj
  11. Dirk Lefeber
  12. Michael Tiemeyer
  13. Hugo J Bellen
  14. Vladislav Panin  Is a corresponding author
  1. Texas A&M University, United States
  2. Baylor College of Medicine, United States
  3. University of Georgia, United States
  4. Radboud University Nijmegen Medical Centre, Netherlands

Abstract

Modification by sialylated glycans can affect protein functions, underlying mechanisms that control animal development and physiology. Sialylation relies on a dedicated pathway involving evolutionarily conserved enzymes, including CMP-sialic acid synthetase (CSAS) and sialyltransferase (SiaT) that mediate the activation of sialic acid and its transfer onto glycan termini, respectively. In Drosophila, CSAS and DSiaT genes function in the nervous system, affecting neural transmission and excitability. We found that these genes function in different cells: the function of CSAS is restricted to glia, while DSiaT functions in neurons. This partition of the sialylation pathway allows for regulation of neural functions via a glia-mediated control of neural sialylation. The sialylation genes were shown to be required for tolerance to heat and oxidative stress and for maintenance of the normal level of voltage-gated sodium channels. Our results uncovered a unique bipartite sialylation pathway that mediates glia-neuron coupling and regulates neural excitability and stress tolerance.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been uploaded to a public repository for Tables 1 and Supplementary Table 3

The following data sets were generated

Article and author information

Author details

  1. Hilary Scott

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  2. Boris Novikov

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  3. Berrak Ugur

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4806-8891
  4. Brooke Allen

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  5. Ilya Mertsalov

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  6. Pedro Monagas-Valentin

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  7. Melissa Koff

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  8. Sarah Baas Robinson

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    Competing interests
    No competing interests declared.
  9. Kazuhiro Aoki

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    Competing interests
    No competing interests declared.
  10. Raisa Veizaj

    Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  11. Dirk Lefeber

    Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  12. Michael Tiemeyer

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    Competing interests
    No competing interests declared.
  13. Hugo J Bellen

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    Hugo J Bellen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5992-5989
  14. Vladislav Panin

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    For correspondence
    panin@tamu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9126-1481

Funding

National Institutes of Health (NS099409)

  • Vladislav Panin

National Institutes of Health (NS075534)

  • Vladislav Panin

TAMU-COANCYT (2012-037(S))

  • Vladislav Panin

TAMU AgriLife IHA

  • Vladislav Panin

National Institutes of Health (GM103490)

  • Michael Tiemeyer

Radboud Consortium for Glycoscience

  • Dirk Lefeber

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Scott et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,286
    views
  • 215
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hilary Scott
  2. Boris Novikov
  3. Berrak Ugur
  4. Brooke Allen
  5. Ilya Mertsalov
  6. Pedro Monagas-Valentin
  7. Melissa Koff
  8. Sarah Baas Robinson
  9. Kazuhiro Aoki
  10. Raisa Veizaj
  11. Dirk Lefeber
  12. Michael Tiemeyer
  13. Hugo J Bellen
  14. Vladislav Panin
(2023)
Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila
eLife 12:e78280.
https://doi.org/10.7554/eLife.78280

Share this article

https://doi.org/10.7554/eLife.78280

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.