Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila

  1. Hilary Scott
  2. Boris Novikov
  3. Berrak Ugur
  4. Brooke Allen
  5. Ilya Mertsalov
  6. Pedro Monagas-Valentin
  7. Melissa Koff
  8. Sarah Baas Robinson
  9. Kazuhiro Aoki
  10. Raisa Veizaj
  11. Dirk Lefeber
  12. Michael Tiemeyer
  13. Hugo J Bellen
  14. Vladislav Panin  Is a corresponding author
  1. Texas A&M University, United States
  2. Baylor College of Medicine, United States
  3. University of Georgia, United States
  4. Radboud University Nijmegen Medical Centre, Netherlands

Abstract

Modification by sialylated glycans can affect protein functions, underlying mechanisms that control animal development and physiology. Sialylation relies on a dedicated pathway involving evolutionarily conserved enzymes, including CMP-sialic acid synthetase (CSAS) and sialyltransferase (SiaT) that mediate the activation of sialic acid and its transfer onto glycan termini, respectively. In Drosophila, CSAS and DSiaT genes function in the nervous system, affecting neural transmission and excitability. We found that these genes function in different cells: the function of CSAS is restricted to glia, while DSiaT functions in neurons. This partition of the sialylation pathway allows for regulation of neural functions via a glia-mediated control of neural sialylation. The sialylation genes were shown to be required for tolerance to heat and oxidative stress and for maintenance of the normal level of voltage-gated sodium channels. Our results uncovered a unique bipartite sialylation pathway that mediates glia-neuron coupling and regulates neural excitability and stress tolerance.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been uploaded to a public repository for Tables 1 and Supplementary Table 3

The following data sets were generated

Article and author information

Author details

  1. Hilary Scott

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  2. Boris Novikov

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  3. Berrak Ugur

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4806-8891
  4. Brooke Allen

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  5. Ilya Mertsalov

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  6. Pedro Monagas-Valentin

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  7. Melissa Koff

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  8. Sarah Baas Robinson

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    Competing interests
    No competing interests declared.
  9. Kazuhiro Aoki

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    Competing interests
    No competing interests declared.
  10. Raisa Veizaj

    Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  11. Dirk Lefeber

    Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    No competing interests declared.
  12. Michael Tiemeyer

    Complex Carbohydrate Research Center, University of Georgia, Athens, United States
    Competing interests
    No competing interests declared.
  13. Hugo J Bellen

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    Hugo J Bellen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5992-5989
  14. Vladislav Panin

    Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
    For correspondence
    panin@tamu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9126-1481

Funding

National Institutes of Health (NS099409)

  • Vladislav Panin

National Institutes of Health (NS075534)

  • Vladislav Panin

TAMU-COANCYT (2012-037(S))

  • Vladislav Panin

TAMU AgriLife IHA

  • Vladislav Panin

National Institutes of Health (GM103490)

  • Michael Tiemeyer

Radboud Consortium for Glycoscience

  • Dirk Lefeber

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Scott et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,188
    views
  • 206
    downloads
  • 0
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hilary Scott
  2. Boris Novikov
  3. Berrak Ugur
  4. Brooke Allen
  5. Ilya Mertsalov
  6. Pedro Monagas-Valentin
  7. Melissa Koff
  8. Sarah Baas Robinson
  9. Kazuhiro Aoki
  10. Raisa Veizaj
  11. Dirk Lefeber
  12. Michael Tiemeyer
  13. Hugo J Bellen
  14. Vladislav Panin
(2023)
Glia-neuron coupling via a bipartite sialylation pathway promotes neural transmission and stress tolerance in Drosophila
eLife 12:e78280.
https://doi.org/10.7554/eLife.78280

Share this article

https://doi.org/10.7554/eLife.78280

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.