Abstract

HIV establishes a persistent infection in heterogeneous cell reservoirs, which can be maintained by different mechanisms including cellular proliferation, and represent the main obstacle to curing the infection. The expression of the Fcγ receptor CD32 has been identified as a marker of the active cell reservoirs in people on antiretroviral therapy, but if its expression has any role in conferring advantage for viral persistence is unknown. Here, we report that HIV-infected cells expressing CD32 have reduced susceptibility to natural killer (NK) antibody-dependent cell cytotoxicity (ADCC) by a mechanism compatible with the suboptimal binding of HIV-specific antibodies. Infected CD32 cells have increased proliferative capacity in the presence of immune complexes, and are more resistant to strategies directed to potentiate NK function. Remarkably, reactivation of the latent reservoir from antiretroviral-treated people living with HIV increases the pool of infected CD32 cells, which are largely resistant to the ADCC immune mechanism. Thus, we report the existence of reservoir cells that evade part of the NK immune response through the expression of CD32.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files. Source data are provided with this paper.

Article and author information

Author details

  1. Antonio Astorga-Gamaza

    Infectious Disease Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Judith Grau-Expósito

    Infectious Disease Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Joaquín Burgos

    Infectious Disease Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Jordi Navarro

    Infectious Disease Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7187-0367
  5. Adrià Curran

    Infectious Disease Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Bibiana Planas

    Infectious Disease Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Paula Suanzes

    Infectious Disease Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6871-0098
  8. Vicenç Falcó

    Infectious Disease Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Meritxell Genescà

    Infectious Disease Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  10. Maria Buzon

    Infectious Disease Department, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
    For correspondence
    mariajose.buzon@vhir.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4427-9413

Funding

Spanish National Plan for Scientific and Technical Research and Innovation (SAF2015-67334-R)

  • Maria Buzon

Spanish National Plan for Scientific and Technical Research and Innovation (RTI2018-101082-B)

  • Maria Buzon

Fundació La Marató TV3 (201805-10FMTV3)

  • Maria Buzon

Fundació La Marató TV3 (201814-10FMTV3)

  • Meritxell Genescà

Spanish Health Institute Carlos III (CP17/00179)

  • Maria Buzon

Spanish National Plan for Scientific and Technical Research and Innovation (BES-2016-076382)

  • Antonio Astorga-Gamaza

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Julie M Overbaugh, Fred Hutchinson Cancer Research Center, United States

Ethics

Human subjects: This study involves human samples. PBMCs from PLWH were obtained from the HIV unit of the Hospital Universitari Vall d'Hebron in Barcelona, Spain. Study protocols were approved by the corresponding Ethical Committees (Institutional Review Board numbers PR(AG)270/2015 and PR(AG)39/2016). PBMCs from healthy donors were obtained from the Blood and Tissue Bank, Barcelona, Spain. All subjects recruited to this study were adults who provided written informed consent. Samples were completely anonymous and untraceable and were prospectively collected and cryopreserved in the Biobank (register number C.0003590).

Version history

  1. Preprint posted: February 25, 2022 (view preprint)
  2. Received: March 1, 2022
  3. Accepted: May 23, 2022
  4. Accepted Manuscript published: May 26, 2022 (version 1)
  5. Version of Record published: June 8, 2022 (version 2)

Copyright

© 2022, Astorga-Gamaza et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,778
    views
  • 290
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Antonio Astorga-Gamaza
  2. Judith Grau-Expósito
  3. Joaquín Burgos
  4. Jordi Navarro
  5. Adrià Curran
  6. Bibiana Planas
  7. Paula Suanzes
  8. Vicenç Falcó
  9. Meritxell Genescà
  10. Maria Buzon
(2022)
Identification of HIV-reservoir cells with reduced susceptibility to antibody-dependent immune response
eLife 11:e78294.
https://doi.org/10.7554/eLife.78294

Share this article

https://doi.org/10.7554/eLife.78294

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Alexander D Cook, Mark Carrington, Matthew K Higgins
    Research Article

    African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.

    1. Microbiology and Infectious Disease
    Michael D Sacco, Lauren R Hammond ... Yu Chen
    Research Article

    In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to finetune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.