Abstract

Epifluorescence miniature microscopes ('miniscopes') are widely used for in vivo calcium imaging of neural population activity. Imaging data is typically collected during a behavioral task and stored for later offline analysis, but emerging techniques for online imaging can support novel closed-loop experiments in which neural population activity is decoded in real time to trigger neurostimulation or sensory feedback. To achieve short feedback latencies, online imaging systems must be optimally designed to maximize computational speed and efficiency while minimizing errors in population decoding. Here we introduce DeCalciOn, an open-source device for real-time imaging and population decoding of in vivo calcium signals that is hardware compatible with all miniscopes that use the UCLA Data Acquisition (DAQ) interface. DeCalciOn performs online motion stabilization, neural enhancement, calcium trace extraction, and decoding of up to 1024 traces per frame at latencies of <50 ms after fluorescence photons arrive at the miniscope image sensor. We show that DeCalciOn can accurately decode the position of rats (n=12) running on a linear track from calcium fluorescence in the hippocampal CA1 layer, and can categorically classify behaviors performed by rats (n=2) during an instrumental task from calcium fluorescence in orbitofrontal cortex (OFC). DeCalciOn achieves high decoding accuracy at short latencies using innovations such as field-programmable gate array (FPGA) hardware for real time image processing and contour-free methods to efficiently extract calcium traces from sensor images. In summary, our system offers an affordable plug-and-play solution for real-time calcium imaging experiments in behaving animals.

Data availability

All hardware, software, and firmware are openly available through miniscope.org and at github.com/zhe-ch/ACTEV.

The following data sets were generated

Article and author information

Author details

  1. Zhe Chen

    Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Garrett J Blair

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2724-8914
  3. Changliang Guo

    David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Jim Zhou

    Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Juan-Luis Romero-Sosa

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Alicia Izquierdo

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    Alicia Izquierdo, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9897-2091
  7. Peyman Golshani

    David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Jason Cong

    Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Daniel Aharoni

    Department of Neurology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4931-8514
  10. Hugh T Blair

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    tadblair@g.ucla.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8256-5109

Funding

NSF NeuroNex (1707408)

  • Peyman Golshani
  • Jason Cong
  • Daniel Aharoni
  • Hugh T Blair

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Brice Bathellier, CNRS, France

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2017-038) of the University of California Los Angeles. The protocol was approved by the Committee on the Ethics of Animal Experiments of UCLA. All surgery was performed under deep isoflurane anesthesia, and every effort was made to minimize suffering, including administration of pre- and post-surgical analgesia.

Version history

  1. Preprint posted: February 2, 2022 (view preprint)
  2. Received: March 3, 2022
  3. Accepted: January 23, 2023
  4. Accepted Manuscript published: January 24, 2023 (version 1)
  5. Version of Record published: February 8, 2023 (version 2)

Copyright

© 2023, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,564
    views
  • 307
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhe Chen
  2. Garrett J Blair
  3. Changliang Guo
  4. Jim Zhou
  5. Juan-Luis Romero-Sosa
  6. Alicia Izquierdo
  7. Peyman Golshani
  8. Jason Cong
  9. Daniel Aharoni
  10. Hugh T Blair
(2023)
A hardware system for real time decoding of in vivo calcium imaging data
eLife 12:e78344.
https://doi.org/10.7554/eLife.78344

Share this article

https://doi.org/10.7554/eLife.78344

Further reading

    1. Computational and Systems Biology
    David Geller-McGrath, Kishori M Konwar ... Jason E McDermott
    Tools and Resources

    The reconstruction of complete microbial metabolic pathways using ‘omics data from environmental samples remains challenging. Computational pipelines for pathway reconstruction that utilize machine learning methods to predict the presence or absence of KEGG modules in incomplete genomes are lacking. Here, we present MetaPathPredict, a software tool that incorporates machine learning models to predict the presence of complete KEGG modules within bacterial genomic datasets. Using gene annotation data and information from the KEGG module database, MetaPathPredict employs deep learning models to predict the presence of KEGG modules in a genome. MetaPathPredict can be used as a command line tool or as a Python module, and both options are designed to be run locally or on a compute cluster. Benchmarks show that MetaPathPredict makes robust predictions of KEGG module presence within highly incomplete genomes.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kenya Hitomi, Yoichiro Ishii, Bei-Wen Ying
    Research Article

    As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.