Abstract

Epifluorescence miniature microscopes ('miniscopes') are widely used for in vivo calcium imaging of neural population activity. Imaging data is typically collected during a behavioral task and stored for later offline analysis, but emerging techniques for online imaging can support novel closed-loop experiments in which neural population activity is decoded in real time to trigger neurostimulation or sensory feedback. To achieve short feedback latencies, online imaging systems must be optimally designed to maximize computational speed and efficiency while minimizing errors in population decoding. Here we introduce DeCalciOn, an open-source device for real-time imaging and population decoding of in vivo calcium signals that is hardware compatible with all miniscopes that use the UCLA Data Acquisition (DAQ) interface. DeCalciOn performs online motion stabilization, neural enhancement, calcium trace extraction, and decoding of up to 1024 traces per frame at latencies of <50 ms after fluorescence photons arrive at the miniscope image sensor. We show that DeCalciOn can accurately decode the position of rats (n=12) running on a linear track from calcium fluorescence in the hippocampal CA1 layer, and can categorically classify behaviors performed by rats (n=2) during an instrumental task from calcium fluorescence in orbitofrontal cortex (OFC). DeCalciOn achieves high decoding accuracy at short latencies using innovations such as field-programmable gate array (FPGA) hardware for real time image processing and contour-free methods to efficiently extract calcium traces from sensor images. In summary, our system offers an affordable plug-and-play solution for real-time calcium imaging experiments in behaving animals.

Data availability

All hardware, software, and firmware are openly available through miniscope.org and at github.com/zhe-ch/ACTEV.

The following data sets were generated

Article and author information

Author details

  1. Zhe Chen

    Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Garrett J Blair

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2724-8914
  3. Changliang Guo

    David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Jim Zhou

    Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Juan-Luis Romero-Sosa

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Alicia Izquierdo

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    Alicia Izquierdo, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9897-2091
  7. Peyman Golshani

    David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Jason Cong

    Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  9. Daniel Aharoni

    Department of Neurology, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4931-8514
  10. Hugh T Blair

    Department of Psychology, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    tadblair@g.ucla.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8256-5109

Funding

NSF NeuroNex (1707408)

  • Peyman Golshani
  • Jason Cong
  • Daniel Aharoni
  • Hugh T Blair

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2017-038) of the University of California Los Angeles. The protocol was approved by the Committee on the Ethics of Animal Experiments of UCLA. All surgery was performed under deep isoflurane anesthesia, and every effort was made to minimize suffering, including administration of pre- and post-surgical analgesia.

Copyright

© 2023, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,781
    views
  • 333
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhe Chen
  2. Garrett J Blair
  3. Changliang Guo
  4. Jim Zhou
  5. Juan-Luis Romero-Sosa
  6. Alicia Izquierdo
  7. Peyman Golshani
  8. Jason Cong
  9. Daniel Aharoni
  10. Hugh T Blair
(2023)
A hardware system for real time decoding of in vivo calcium imaging data
eLife 12:e78344.
https://doi.org/10.7554/eLife.78344

Share this article

https://doi.org/10.7554/eLife.78344

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Pamela Garcia-Saldivar, Cynthia de León ... Hugo Merchant
    Research Article

    We determined the intersubject association between the rhythmic entrainment abilities of human subjects during a synchronization-continuation tapping task (SCT) and the macro- and microstructural properties of their superficial (SWM) and deep (DWM) white matter. Diffusion-weighted images were obtained from 32 subjects who performed the SCT with auditory or visual metronomes and five tempos ranging from 550 to 950 ms. We developed a method to determine the density of short-range fibers that run underneath the cortical mantle, interconnecting nearby cortical regions (U-fibers). Notably, individual differences in the density of U-fibers in the right audiomotor system were correlated with the degree of phase accuracy between the stimuli and taps across subjects. These correlations were specific to the synchronization epoch with auditory metronomes and tempos around 1.5 Hz. In addition, a significant association was found between phase accuracy and the density and bundle diameter of the corpus callosum, forming an interval-selective map where short and long intervals were behaviorally correlated with the anterior and posterior portions of the corpus callosum. These findings suggest that the structural properties of the SWM and DWM in the audiomotor system support the tapping synchronization abilities of subjects, as cortical U-fiber density is linked to the preferred tapping tempo and the bundle properties of the corpus callosum define an interval-selective topography.

    1. Computational and Systems Biology
    2. Developmental Biology
    Juan Manuel Gomez, Hendrik Nolte ... Maria Leptin
    Research Article

    The initially homogeneous epithelium of the early Drosophila embryo differentiates into regional subpopulations with different behaviours and physical properties that are needed for morphogenesis. The factors at top of the genetic hierarchy that control these behaviours are known, but many of their targets are not. To understand how proteins work together to mediate differential cellular activities, we studied in an unbiased manner the proteomes and phosphoproteomes of the three main cell populations along the dorso-ventral axis during gastrulation using mutant embryos that represent the different populations. We detected 6111 protein groups and 6259 phosphosites of which 3398 and 3433 respectively, were differentially regulated. The changes in phosphosite abundance did not correlate with changes in host protein abundance, showing phosphorylation to be a regulatory step during gastrulation. Hierarchical clustering of protein groups and phosphosites identified clusters that contain known fate determinants such as Doc1, Sog, Snail and Twist. The recovery of the appropriate known marker proteins in each of the different mutants we used validated the approach, but also revealed that two mutations that both interfere with the dorsal fate pathway, Toll10B and serpin27aex do this in very different manners. Diffused network analyses within each cluster point to microtubule components as one of the main groups of regulated proteins. Functional studies on the role of microtubules provide the proof of principle that microtubules have different functions in different domains along the DV axis of the embryo.