Chondroitin Sulfate Proteoglycan 4,6 sulfation regulates sympathetic nerve regeneration after myocardial infarction

  1. Matthew R Blake
  2. Diana C Parrish
  3. Melanie A Staffenson
  4. Shanice Sueda
  5. William R Woodward
  6. Beth A Habecker  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Portland State University, United States

Abstract

Sympathetic denervation of the heart following ischemia/reperfusion induced myocardial infarction (MI) is sustained by chondroitin sulfate proteoglycans (CSPGs) in the cardiac scar. Denervation predicts risk of sudden cardiac death in humans. Blocking CSPG signaling restores sympathetic axon outgrowth into the cardiac scar, decreasing arrhythmia susceptibility. Axon growth inhibition by CSPGs is thought to depend on the sulfation status of the glycosaminoglycans (CS-GAGs) attached to the core protein. Tandem sulfation of CS-GAGs at the 4th (4S) and 6th (6S) positions of n-acetyl-galactosamine inhibits outgrowth in several types of neurons within the central nervous system, but it is not known if sulfation is similarly critical during peripheral nerve regeneration. We asked if CSPG sulfation prevented sympathetic axon outgrowth. Neurite outgrowth of dissociated rat sympathetic neurons across purified CSPGs is restored in vitro by reducing 4S with the 4-sulfatase enzyme Arylsulfatase-B (ARSB). Additionally, we co-cultured mouse cardiac scar tissue with mouse sympathetic ganglia ex vivo and found that reducing 4S with ARSB restored axon outgrowth to control levels. We examined levels of the enzymes responsible for adding and removing sulfation to CS-GAGs by western blot to determine if they were altered in the left ventricle after MI. We found that CHST15 (4S dependent 6-sulfotransferase) was upregulated, and ARSB was downregulated after MI. Increased CHST15 combined with decreased ARSB suggests a mechanism for production and maintenance of sulfated CSPGs in the cardiac scar. We altered tandem sulfated 4S,6S CS-GAGs in vivo by transient siRNA knockdown of Chst15 and found that reducing 4S,6S restored Tyrosine Hydroxylase (TH) positive sympathetic nerve fibers in the cardiac scar and reduced arrhythmias using a mouse model of MI. Overall, our results suggest that modulating CSPG-sulfation after MI may be a therapeutic target to promote sympathetic nerve regeneration in the cardiac scar and reduce post-MI cardiac arrhythmias.

Data availability

All data generated during this study are included in the manuscript and supporting files. Source data for annotated Western blot images from figure 1, 4, 5, 6 and S1, S2, S3 have been made available in the zipped western blot source data folder. Images are not cropped and they are labeled such that the figure number and protein blotted in each image are in the file name.

Article and author information

Author details

  1. Matthew R Blake

    Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0584-7684
  2. Diana C Parrish

    Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Melanie A Staffenson

    Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shanice Sueda

    Portland State University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. William R Woodward

    Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Beth A Habecker

    Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, United States
    For correspondence
    habecker@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4658-8730

Funding

National Heart, Lung, and Blood Institute (HL093056)

  • Beth A Habecker

National Heart, Lung, and Blood Institute (F31HL152490)

  • Matthew R Blake

American Heart Association (20PRE35210768)

  • Matthew R Blake

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the OHSU Institutional Animal Care and Use Committee(IACUC# TR01_IP00001366) and comply with the Guide for the Care and Use of Laboratory Animals published by the National Academies Press (8th edition). All myocardial infarction surgeries were performed under anesthesia induced with 4% isoflurane and maintained with 2% isoflurane. After surgery, animals were treated with buprenorphine and meloxicam to minimize suffering and discomfort.

Copyright

© 2022, Blake et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,336
    views
  • 307
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew R Blake
  2. Diana C Parrish
  3. Melanie A Staffenson
  4. Shanice Sueda
  5. William R Woodward
  6. Beth A Habecker
(2022)
Chondroitin Sulfate Proteoglycan 4,6 sulfation regulates sympathetic nerve regeneration after myocardial infarction
eLife 11:e78387.
https://doi.org/10.7554/eLife.78387

Share this article

https://doi.org/10.7554/eLife.78387

Further reading

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.