Gain, not concomitant changes in spatial receptive field properties, improves task performance in a neural network attention model

  1. Kai J Fox  Is a corresponding author
  2. Daniel Birman  Is a corresponding author
  3. Justin L Gardner
  1. Stanford University, United States
  2. University of Washington, United States

Abstract

Attention allows us to focus sensory processing on behaviorally relevant aspects of the visual world. One potential mechanism of attention is a change in the gain of sensory responses. However, changing gain at early stages could have multiple downstream consequences for visual processing. Which, if any, of these effects can account for the benefits of attention for detection and discrimination? Using a model of primate visual cortex we document how a Gaussian-shaped gain modulation results in changes to spatial tuning properties. Forcing the model to use only these changes failed to produce any benefit in task performance. Instead, we found that gain alone was both necessary and sufficient to explain category detection and discrimination during attention. Our results show how gain can give rise to changes in receptive fields which are not necessary for enhancing task performance.

Data availability

The images and composite grids used in this study as well as the code necessary to replicate our analyses are available in the Open Science Framework with the identifier 10.17605/OSF.IO/AGHQK.

The following data sets were generated

Article and author information

Author details

  1. Kai J Fox

    Department of Psychology, Stanford University, Stanford, United States
    For correspondence
    kaifox@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel Birman

    Department of Biological Structure, University of Washington, Seattle, United States
    For correspondence
    dbirman@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3748-6289
  3. Justin L Gardner

    Department of Psychology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

Washington Ressearch Foundation (Postdoctoral Fellowship)

  • Daniel Birman

Research to Prevent Blindness

  • Justin L Gardner

Lions Club International

  • Justin L Gardner

Hellman Fellows Fund

  • Justin L Gardner

National Eye Institute (T32EY07031)

  • Daniel Birman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John T Serences, University of California, San Diego, United States

Ethics

Human subjects: Procedures were approved in advance by the Stanford Institutional Review Board on human participants research and all observers gave prior written informed consent before participating (Protocol IRB-32120).

Version history

  1. Received: March 5, 2022
  2. Preprint posted: March 7, 2022 (view preprint)
  3. Accepted: May 12, 2023
  4. Accepted Manuscript published: May 15, 2023 (version 1)
  5. Version of Record published: June 5, 2023 (version 2)

Copyright

© 2023, Fox et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 602
    views
  • 132
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kai J Fox
  2. Daniel Birman
  3. Justin L Gardner
(2023)
Gain, not concomitant changes in spatial receptive field properties, improves task performance in a neural network attention model
eLife 12:e78392.
https://doi.org/10.7554/eLife.78392

Share this article

https://doi.org/10.7554/eLife.78392

Further reading

    1. Neuroscience
    David J Herzfeld
    Insight

    Abnormal activity in the cerebellar nuclei can be used to predict motor symptoms and induce them experimentally, pointing to potential therapeutic strategies.

    1. Cell Biology
    2. Neuroscience
    Jaebin Kim, Edwin Bustamante ... Scott H Soderling
    Research Article

    One of the most extensively studied members of the Ras superfamily of small GTPases, Rac1 is an intracellular signal transducer that remodels actin and phosphorylation signaling networks. Previous studies have shown that Rac1-mediated signaling is associated with hippocampal-dependent working memory and longer-term forms of learning and memory and that Rac1 can modulate forms of both pre- and postsynaptic plasticity. How these different cognitive functions and forms of plasticity mediated by Rac1 are linked, however, is unclear. Here, we show that spatial working memory in mice is selectively impaired following the expression of a genetically encoded Rac1 inhibitor at presynaptic terminals, while longer-term cognitive processes are affected by Rac1 inhibition at postsynaptic sites. To investigate the regulatory mechanisms of this presynaptic process, we leveraged new advances in mass spectrometry to identify the proteomic and post-translational landscape of presynaptic Rac1 signaling. We identified serine/threonine kinases and phosphorylated cytoskeletal signaling and synaptic vesicle proteins enriched with active Rac1. The phosphorylated sites in these proteins are at positions likely to have regulatory effects on synaptic vesicles. Consistent with this, we also report changes in the distribution and morphology of synaptic vesicles and in postsynaptic ultrastructure following presynaptic Rac1 inhibition. Overall, this study reveals a previously unrecognized presynaptic role of Rac1 signaling in cognitive processes and provides insights into its potential regulatory mechanisms.