A new insight into RecA filament regulation by RecX from the analysis of conformation-specific interactions

  1. Aleksandr Alekseev  Is a corresponding author
  2. Georgii Pobegalov  Is a corresponding author
  3. Natalia Morozova
  4. Alexey Vedyaykin
  5. Galina Cherevatenko
  6. Alexander Yakimov
  7. Dmitry Baitin
  8. Mikhail Khodorkovskii
  1. Peter the Great St. Petersburg Polytechnic University, Russian Federation
  2. Kurchatov Institute, Russian Federation

Abstract

RecA protein mediates homologous recombination repair in bacteria through assembly of long helical filaments on single-stranded DNA (ssDNA) in an ATP dependent manner. RecX, an important negative regulator of RecA, is known to inhibit RecA activity by stimulating the disassembly of RecA nucleoprotein filaments. Here we use a single-molecule approach to address the regulation of (E. coli) RecA-ssDNA filaments by RecX (E. coli) within the framework of distinct conformational states of RecA-ssDNA filament. Our findings revealed that RecX effectively binds the inactive conformation of RecA-ssDNA filaments and slows down the transition to the active state. Results of this work provide new mechanistic insights into the RecX-RecA interactions and highlight the importance of conformational transitions of RecA filaments as an additional level of regulation of its biological activity.

Data availability

Source data files were provided for Figures 1, 2, 3, 4, 5 and Figures supplements.Raw fluorescent images of DNA tether were provided for Figure 4C as Zip file.

Article and author information

Author details

  1. Aleksandr Alekseev

    Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
    For correspondence
    a.alekseev@nanobio.spbstu.ru
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4371-265X
  2. Georgii Pobegalov

    Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
    For correspondence
    george.pobegalov@nanobio.spbstu.ru
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0836-0732
  3. Natalia Morozova

    Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexey Vedyaykin

    Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  5. Galina Cherevatenko

    Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexander Yakimov

    Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  7. Dmitry Baitin

    Kurchatov Institute, St. Petersburg, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  8. Mikhail Khodorkovskii

    Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.

Funding

Russian Science Foundation (19-74-10049)

  • Aleksandr Alekseev
  • Georgii Pobegalov
  • Alexander Yakimov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maria Spies, University of Iowa, United States

Version history

  1. Received: March 6, 2022
  2. Preprint posted: March 14, 2022 (view preprint)
  3. Accepted: June 21, 2022
  4. Accepted Manuscript published: June 22, 2022 (version 1)
  5. Version of Record published: July 4, 2022 (version 2)

Copyright

© 2022, Alekseev et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 828
    views
  • 222
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aleksandr Alekseev
  2. Georgii Pobegalov
  3. Natalia Morozova
  4. Alexey Vedyaykin
  5. Galina Cherevatenko
  6. Alexander Yakimov
  7. Dmitry Baitin
  8. Mikhail Khodorkovskii
(2022)
A new insight into RecA filament regulation by RecX from the analysis of conformation-specific interactions
eLife 11:e78409.
https://doi.org/10.7554/eLife.78409

Share this article

https://doi.org/10.7554/eLife.78409

Further reading

    1. Structural Biology and Molecular Biophysics
    Marco van den Noort, Panagiotis Drougkas ... Bert Poolman
    Research Article

    Bacteria utilize various strategies to prevent internal dehydration during hypertonic stress. A common approach to countering the effects of the stress is to import compatible solutes such as glycine betaine, leading to simultaneous passive water fluxes following the osmotic gradient. OpuA from Lactococcus lactis is a type I ABC-importer that uses two substrate-binding domains (SBDs) to capture extracellular glycine betaine and deliver the substrate to the transmembrane domains for subsequent transport. OpuA senses osmotic stress via changes in the internal ionic strength and is furthermore regulated by the 2nd messenger cyclic-di-AMP. We now show, by means of solution-based single-molecule FRET and analysis with multi-parameter photon-by-photon hidden Markov modeling, that the SBDs transiently interact in an ionic strength-dependent manner. The smFRET data are in accordance with the apparent cooperativity in transport and supported by new cryo-EM data of OpuA. We propose that the physical interactions between SBDs and cooperativity in substrate delivery are part of the transport mechanism.

    1. Structural Biology and Molecular Biophysics
    Xiao-Ru Chen, Karuna Dixit ... Tatyana I Igumenova
    Research Article

    Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and βII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCβII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.