Metrics of high cofluctuation and entropy to describe control of cardiac function in the stellate ganglion
Abstract
Stellate ganglia within the intrathoracic cardiac control system receive and integrate central, peripheral, and cardiopulmonary information to produce postganglionic cardiac sympathetic inputs. Pathological anatomical and structural remodeling occurs within the neurons of the stellate ganglion (SG) in the setting of heart failure. A large proportion of SG neurons function as interneurons whose networking capabilities are largely unknown. Current therapies are limited to targeting sympathetic activity at the cardiac level or surgical interventions such as stellectomy, to treat heart failure. Future therapies that target the stellate ganglion will require understanding of their networking capabilities to modify any pathological remodeling. We observe SG networking by examining cofluctuation and specificity of SG networked activity to cardiac cycle phases. We investigate network processing of cardiopulmonary transduction by SG neuronal populations in porcine with chronic pacing-induced heart failure and control subjects during extended in-vivo extracellular microelectrode recordings. We find that information processing and cardiac control in chronic heart failure by the SG, relative to controls, exhibits: i) more frequent, short-lived, high magnitude cofluctuations, ii) greater variation in neural specificity to cardiac cycles, and iii) neural network activity and cardiac control linkage that depends on disease state and cofluctuation magnitude.
Data availability
Data is available in the Dryad repositoryCode AvailabilitySupporting Apache License codes are at GitHub (https://github.com/Koustubh2111/Cofluctuation-and-Entropy-Code-Data).
-
Metrics of High Cofluctuation and Entropy to Describe Control of Cardiac Function in the Stellate Ganglion: Neural Recordings from Swine ModelsDryad Digital Repository, doi:10.5068/D10Q22.
Article and author information
Author details
Funding
National Institutes of Health (DP2 OD024323-01)
- Olujimi A Ajijola
NHLBI Division of Intramural Research (R01 HL159001)
- Olujimi A Ajijola
National Science Foundation (ASEE 2127509)
- Nil Z Gurel
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: The study was performed under a protocol approved by the University of California Los Angeles (UCLA) Animal Research Committee (ARC), in compliance with the UCLA Institutional Animal Care and Use Committee (IACUC) guidelines and the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals (Protocol #: ARC 2015-022). For SG neural data collection, the animals were sedated with tiletamine and zolazepam (Telazol, 4-8mg/kg) intramuscularly, intubated, and maintained under general anesthesia with inhaled isoflurane (2%). Continuous intravenous saline (8 − 10𝑚𝑙∕𝑘𝑔∕h) was infused throughout the protocol and animals were temperature maintained using heated water blankets (37𝑜𝐶 − 38𝑜𝐶).At the end of the protocol, animals were euthanized under deep sedation of isoflurane and cardiac fibrillation was induced.
Copyright
© 2022, Gurel et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 557
- views
-
- 69
- downloads
-
- 2
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.