Population codes enable learning from few examples by shaping inductive bias
Abstract
Learning from a limited number of experiences requires suitable inductive biases. To identify how inductive biases are implemented in and shaped by neural codes, we analyze sample-efficient learning of arbitrary stimulus-response maps from arbitrary neural codes with biologically-plausible readouts. We develop an analytical theory that predicts the generalization error of the readout as a function of the number of observed examples. Our theory illustrates in a mathematically precise way how the structure of population codes shapes inductive bias, and how a match between the code and the task is crucial for sample-efficient learning. It elucidates a bias to explain observed data with simple stimulus-response maps. Using recordings from the mouse primary visual cortex, we demonstrate the existence of an efficiency bias towards low frequency orientation discrimination tasks for grating stimuli and low spatial frequency reconstruction tasks for natural images. We reproduce the discrimination bias in a simple model of primary visual cortex, and further show how invariances in the code to certain stimulus variations alter learning performance. We extend our methods to time-dependent neural codes and predict the sample efficiency of readouts from recurrent networks. We observe that many different codes can support the same inductive bias. By analyzing recordings from the mouse primary visual cortex, we demonstrate that biological codes have lower total activity than other codes with identical bias. Finally, we discuss implications of our theory in the context of recent developments in neuroscience and artificial intelligence. Overall, our study provides a concrete method for elucidating inductive biases of the brain and promotes sample-efficient learning as a general normative coding principle.
Data availability
Mouse V1 neuron responses to orientation gratings and preprocessing code were obtained from a publicly available dataset: https://github.com/MouseLand/stringer-et-al-2019, [8, 9].Responses to ImageNet images and preprocessing code were obtained from another publicly available dataset, https://github.com/MouseLand/stringer-pachitariu-et-al-2018b [10, 11].The code generated by the authors for this paper is also available https://github.com/Pehlevan-Group/sample_efficient_pop_codes
-
Recordings of ten thousand neurons in visual cortex in response to 2,800 natural imageshttps://doi.org/10.25378/janelia.6845348.v4.
-
Recordings of ~20,000 neurons from V1 in response to oriented stimulihttps://doi.org/10.25378/janelia.8279387.v3.
Article and author information
Author details
Funding
National Science Foundation (DMS-2134157)
- Blake Bordelon
- Cengiz Pehlevan
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Bordelon & Pehlevan
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,984
- views
-
- 358
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Neuroscience
Experience shapes the brain as neural circuits can be modified by neural stimulation or the lack of it. The molecular mechanisms underlying structural circuit plasticity and how plasticity modifies behaviour are poorly understood. Subjective experience requires dopamine, a neuromodulator that assigns a value to stimuli, and it also controls behaviour, including locomotion, learning, and memory. In Drosophila, Toll receptors are ideally placed to translate experience into structural brain change. Toll-6 is expressed in dopaminergic neurons (DANs), raising the intriguing possibility that Toll-6 could regulate structural plasticity in dopaminergic circuits. Drosophila neurotrophin-2 (DNT-2) is the ligand for Toll-6 and Kek-6, but whether it is required for circuit structural plasticity was unknown. Here, we show that DNT-2-expressing neurons connect with DANs, and they modulate each other. Loss of function for DNT-2 or its receptors Toll-6 and kinase-less Trk-like kek-6 caused DAN and synapse loss, impaired dendrite growth and connectivity, decreased synaptic sites, and caused locomotion deficits. In contrast, over-expressed DNT-2 increased DAN cell number, dendrite complexity, and promoted synaptogenesis. Neuronal activity modified DNT-2, increased synaptogenesis in DNT-2-positive neurons and DANs, and over-expression of DNT-2 did too. Altering the levels of DNT-2 or Toll-6 also modified dopamine-dependent behaviours, including locomotion and long-term memory. To conclude, a feedback loop involving dopamine and DNT-2 highlighted the circuits engaged, and DNT-2 with Toll-6 and Kek-6 induced structural plasticity in this circuit modifying brain function and behaviour.
-
- Cell Biology
- Neuroscience
Sorting nexin 4 (SNX4) is an evolutionary conserved organizer of membrane recycling. In neurons, SNX4 accumulates in synapses, but how SNX4 affects synapse function remains unknown. We generated a conditional SNX4 knock-out mouse model and report that SNX4 cKO synapses show enhanced neurotransmission during train stimulation, while the first evoked EPSC was normal. SNX4 depletion did not affect vesicle recycling, basic autophagic flux, or the levels and localization of SNARE-protein VAMP2/synaptobrevin-2. However, SNX4 depletion affected synapse ultrastructure: an increase in docked synaptic vesicles at the active zone, while the overall vesicle number was normal, and a decreased active zone length. These effects together lead to a substantially increased density of docked vesicles per release site. In conclusion, SNX4 is a negative regulator of synaptic vesicle docking and release. These findings suggest a role for SNX4 in synaptic vesicle recruitment at the active zone.