Ablation of palladin in adult heart causes dilated cardiomyopathy associated with intercalated disc abnormalities

  1. Giuseppina Mastrototaro
  2. Pierluigi Carullo
  3. Jianlin Zhang
  4. Beatrice Scellini
  5. Nicoletta Piroddi
  6. Simona Nemska
  7. Maria Carmela Filomena
  8. Simone Serio
  9. Carol A Otey
  10. Chiara Tesi
  11. Fabian Emrich
  12. Wolfgang A Linke
  13. Corrado Poggesi
  14. Simona Boncompagni
  15. Marie-Louise Bang  Is a corresponding author
  1. IRCCS Humanitas Research Hospital, Italy
  2. Institute of Genetic and Biomedical Research, Italy
  3. University of California, San Diego, United States
  4. University of Florence, Italy
  5. University of North Carolina at Chapel Hill, United States
  6. Goethe University Hospital, Germany
  7. University of Münster, Germany
  8. University G d' Annunzio of Chieti, Italy

Abstract

Palladin (PALLD) belongs to the PALLD/myopalladin (MYPN)/myotilin family of actin-associated immunoglobulin-containing proteins in the sarcomeric Z-line. PALLD is ubiquitously expressed in several isoforms and its longest 200 kDa isoform, predominantly expressed in striated muscle, shows high structural homology to MYPN. MYPN gene mutations are associated with human cardiomyopathies, whereas the role of PALLD in the heart has remained unknown, partly due to embryonic lethality of PALLD knockout mice. In a yeast two-hybrid screening, CARP/Ankrd1 and FHOD1 were identified as novel interaction partners of PALLD's N-terminal region. To study the role of PALLD in the heart, we generated conditional (cPKO) and inducible (cPKOi) cardiomyocyte-specific PALLD knockout mice. While cPKO mice exhibited no pathological phenotype, ablation of PALLD in adult cPKOi mice caused progressive cardiac dilation and systolic dysfunction, associated with reduced cardiomyocyte contractility, intercalated disc abnormalities, and fibrosis, demonstrating that PALLD is essential for normal cardiac function. Double cPKO and MYPN knockout (MKO) mice exhibited a similar phenotype as MKO mice, suggesting that MYPN does not compensate for the loss of PALLD in cPKO mice. Altered transcript levels of MYPN and PALLD isoforms were found in myocardial tissue from human dilated and ischemic cardiomyopathy patients, whereas their protein expression levels were unaltered.

Data availability

All data generated and analysed during this study are included in the manuscript and figure supplements. Source Data files have been provided for all figures.

Article and author information

Author details

  1. Giuseppina Mastrototaro

    IRCCS Humanitas Research Hospital, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Pierluigi Carullo

    Institute of Genetic and Biomedical Research, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Jianlin Zhang

    School of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Beatrice Scellini

    Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicoletta Piroddi

    Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Simona Nemska

    IRCCS Humanitas Research Hospital, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Maria Carmela Filomena

    Institute of Genetic and Biomedical Research, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Simone Serio

    IRCCS Humanitas Research Hospital, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7294-2094
  9. Carol A Otey

    Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Chiara Tesi

    Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Fabian Emrich

    Department of Cardiac Surgery, Goethe University Hospital, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Wolfgang A Linke

    Institute of Physiology II, University of Münster, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0801-3773
  13. Corrado Poggesi

    Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  14. Simona Boncompagni

    Department of Neuroscience, Imaging and Clinical Sciences, University G d' Annunzio of Chieti, Chieti, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5308-5069
  15. Marie-Louise Bang

    Institute of Genetic and Biomedical Research, Milan, Italy
    For correspondence
    marie-louise.bang@cnr.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8859-5034

Funding

Fondazione Telethon (GGP12282)

  • Marie-Louise Bang

Ministero dell'Università e della Ricerca (2010R8JK2X_006)

  • Marie-Louise Bang

Horizon 2020 Framework Programme (777204)

  • Corrado Poggesi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal studies were approved by the Italian Ministry of Health and performed in full compliance with the rules and regulations of the European Union (Directive 2010/63/EU of the European Parlia- ment) and Italy (Council of 22 September 2010; directive from the Italian Ministry of Health) on the protection of animals used for scientific purposes.

Human subjects: Human myocardial biopsies from cardiomyopathy patients were obtained from Leipzig Heart Center, Germany following approval by the institutional review board (protocol #240/16-ek) and signed informed consent from the patients according to the principles of the Declaration of Helsinki. Myocardial biopsies from healthy donors rejected for transplantation were obtained from Careggi University Hospital, Florence, Italy (protocol #2006/0024713; renewed May 2009).

Reviewing Editor

  1. Nuno Guimarães-Camboa, Goethe University Frankfurt, Germany

Version history

  1. Received: March 14, 2022
  2. Preprint posted: April 30, 2022 (view preprint)
  3. Accepted: March 15, 2023
  4. Accepted Manuscript published: March 16, 2023 (version 1)
  5. Version of Record published: April 3, 2023 (version 2)

Copyright

© 2023, Mastrototaro et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 564
    Page views
  • 91
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Giuseppina Mastrototaro
  2. Pierluigi Carullo
  3. Jianlin Zhang
  4. Beatrice Scellini
  5. Nicoletta Piroddi
  6. Simona Nemska
  7. Maria Carmela Filomena
  8. Simone Serio
  9. Carol A Otey
  10. Chiara Tesi
  11. Fabian Emrich
  12. Wolfgang A Linke
  13. Corrado Poggesi
  14. Simona Boncompagni
  15. Marie-Louise Bang
(2023)
Ablation of palladin in adult heart causes dilated cardiomyopathy associated with intercalated disc abnormalities
eLife 12:e78629.
https://doi.org/10.7554/eLife.78629

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Daniel Muñoz-Reyes, Levi J McClelland ... Maria Jose Sanchez-Barrena
    Research Article

    The Neuronal Calcium Sensor 1, an EF-hand Ca2+ binding protein, and Ric-8A coregulate synapse number and probability of neurotransmitter release. Recently, the structures of Ric-8A bound to Ga have revealed how Ric-8A phosphorylation promotes Ga recognition and activity as a chaperone and guanine nucleotide exchange factor. However, the molecular mechanism by which NCS-1 regulates Ric-8A activity and its interaction with Ga subunits is not well understood. Given the interest in the NCS-1/Ric-8A complex as a therapeutic target in nervous system disorders, it is necessary to shed light on this molecular mechanism of action at atomic level. We have reconstituted NCS-1/Ric-8A complexes to conduct a multimodal approach and determine the sequence of Ca2+ signals and phosphorylation events that promote the interaction of Ric-8A with Ga. Our data show that the binding of NCS-1 and Ga to Ric-8A are mutually exclusive. Importantly, NCS-1 induces a structural rearrangement in Ric-8A that traps the protein in a conformational state that is inaccessible to Casein Kinase II-mediated phosphorylation, demonstrating one aspect of its negative regulation of Ric-8A-mediated G-protein signaling. Functional experiments indicate a loss of Ric-8A GEF activity towards Ga when complexed with NCS-1, and restoration of nucleotide exchange activity upon increasing Ca2+ concentration. Finally, the high-resolution crystallographic data reported here define the NCS-1/Ric-8A interface and will allow the development of therapeutic synapse function regulators with improved activity and selectivity.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Riham Ayoubi, Joel Ryan ... Carl Laflamme
    Research Advance

    Antibodies are critical reagents to detect and characterize proteins. It is commonly understood that many commercial antibodies do not recognize their intended targets, but information on the scope of the problem remains largely anecdotal, and as such, feasibility of the goal of at least one potent and specific antibody targeting each protein in a proteome cannot be assessed. Focusing on antibodies for human proteins, we have scaled a standardized characterization approach using parental and knockout cell lines (Laflamme et al., 2019) to assess the performance of 614 commercial antibodies for 65 neuroscience-related proteins. Side-by-side comparisons of all antibodies against each target, obtained from multiple commercial partners, have demonstrated that: (i) more than 50% of all antibodies failed in one or more applications, (ii) yet, ~50–75% of the protein set was covered by at least one high-performing antibody, depending on application, suggesting that coverage of human proteins by commercial antibodies is significant; and (iii) recombinant antibodies performed better than monoclonal or polyclonal antibodies. The hundreds of underperforming antibodies identified in this study were found to have been used in a large number of published articles, which should raise alarm. Encouragingly, more than half of the underperforming commercial antibodies were reassessed by the manufacturers, and many had alterations to their recommended usage or were removed from the market. This first study helps demonstrate the scale of the antibody specificity problem but also suggests an efficient strategy toward achieving coverage of the human proteome; mine the existing commercial antibody repertoire, and use the data to focus new renewable antibody generation efforts.