Recalibrating vision-for-action requires years after sight restoration from congenital cataracts

  1. Irene Senna  Is a corresponding author
  2. Sophia Piller
  3. Itay Ben-Zion
  4. Marc O Ernst  Is a corresponding author
  1. ULM University, Germany
  2. Padeh Medical Center, Israel

Abstract

Being able to perform adept goal-directed actions requires predictive, feed-forward control, including a mapping between the visually estimated target locations and the motor commands reaching for them. When the mapping is perturbed, e.g., due to muscle fatigue or optical distortions, we are quickly able to recalibrate the sensorimotor system to update this mapping. Here we investigated whether early visual and visuomotor experience is essential for developing sensorimotor recalibration. To this end, we assessed young individuals deprived from pattern vision due to dense congenital bilateral cataracts, who were surgically treated for sight restoration only years after birth. We compared their recalibration performance to such distortion to that of age-matched sighted controls. Their sensorimotor recalibration performance was impaired right after surgery. This finding cannot be explained by their still lower visual acuity alone, since blurring vision in controls to a matching degree did not lead to comparable behavior. Nevertheless, the recalibration ability of cataract-treated participants gradually improved with time after surgery. Thus, the lack of early pattern vision affects visuomotor recalibration. However, this ability is not lost but slowly develops after sight restoration, highlighting the importance of sensorimotor experience gained late in life.

Data availability

The full dataset including all the experimental results and the participants' demographic information has been deposited on Mendeley: doi:10.17632/ksdwxdwtxg.2. For a preview before the paper is accepted for publication, please visit: https://data.mendeley.com/datasets/ksdwxdwtxg/draft?a=6d65f8db-5a7a-4c95-8468-5dfa36ebfa71

The following data sets were generated

Article and author information

Author details

  1. Irene Senna

    Applied Cognitive Psychology, ULM University, Ulm, Germany
    For correspondence
    82irene.senna@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3237-8193
  2. Sophia Piller

    Applied Cognitive Psychology, ULM University, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Itay Ben-Zion

    Pediatric Ophthalmology Service, Padeh Medical Center, Tiberias, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Marc O Ernst

    Applied Cognitive Psychology, ULM University, Ulm, Germany
    For correspondence
    marc.ernst@uni-ulm.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

Deutsche Forschungsgemeinschaft (ER 542/3-1)

  • Marc O Ernst

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was carried out in accordance with the Declaration of Helsinki and approved by the ethics committee of the University of Bielefeld (Bielefeld University, ref. nr. EUB 2015-139). Participants, or participants' parents or legal guardians in case of minors, gave their written informed consent to participate in the study and have their data published in a journal article in an anonymous form.

Copyright

© 2022, Senna et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 596
    views
  • 91
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Irene Senna
  2. Sophia Piller
  3. Itay Ben-Zion
  4. Marc O Ernst
(2022)
Recalibrating vision-for-action requires years after sight restoration from congenital cataracts
eLife 11:e78734.
https://doi.org/10.7554/eLife.78734

Share this article

https://doi.org/10.7554/eLife.78734

Further reading

    1. Neuroscience
    Masahiro Takigawa, Marta Huelin Gorriz ... Daniel Bendor
    Research Article

    During rest and sleep, memory traces replay in the brain. The dialogue between brain regions during replay is thought to stabilize labile memory traces for long-term storage. However, because replay is an internally-driven, spontaneous phenomenon, it does not have a ground truth - an external reference that can validate whether a memory has truly been replayed. Instead, replay detection is based on the similarity between the sequential neural activity comprising the replay event and the corresponding template of neural activity generated during active locomotion. If the statistical likelihood of observing such a match by chance is sufficiently low, the candidate replay event is inferred to be replaying that specific memory. However, without the ability to evaluate whether replay detection methods are successfully detecting true events and correctly rejecting non-events, the evaluation and comparison of different replay methods is challenging. To circumvent this problem, we present a new framework for evaluating replay, tested using hippocampal neural recordings from rats exploring two novel linear tracks. Using this two-track paradigm, our framework selects replay events based on their temporal fidelity (sequence-based detection), and evaluates the detection performance using each event's track discriminability, where sequenceless decoding across both tracks is used to quantify whether the track replaying is also the most likely track being reactivated.

    1. Neuroscience
    Nicolas Langer, Maurice Weber ... Ce Zhang
    Tools and Resources

    Memory deficits are a hallmark of many different neurological and psychiatric conditions. The Rey–Osterrieth complex figure (ROCF) is the state-of-the-art assessment tool for neuropsychologists across the globe to assess the degree of non-verbal visual memory deterioration. To obtain a score, a trained clinician inspects a patient’s ROCF drawing and quantifies deviations from the original figure. This manual procedure is time-consuming, slow and scores vary depending on the clinician’s experience, motivation, and tiredness. Here, we leverage novel deep learning architectures to automatize the rating of memory deficits. For this, we collected more than 20k hand-drawn ROCF drawings from patients with various neurological and psychiatric disorders as well as healthy participants. Unbiased ground truth ROCF scores were obtained from crowdsourced human intelligence. This dataset was used to train and evaluate a multihead convolutional neural network. The model performs highly unbiased as it yielded predictions very close to the ground truth and the error was similarly distributed around zero. The neural network outperforms both online raters and clinicians. The scoring system can reliably identify and accurately score individual figure elements in previously unseen ROCF drawings, which facilitates explainability of the AI-scoring system. To ensure generalizability and clinical utility, the model performance was successfully replicated in a large independent prospective validation study that was pre-registered prior to data collection. Our AI-powered scoring system provides healthcare institutions worldwide with a digital tool to assess objectively, reliably, and time-efficiently the performance in the ROCF test from hand-drawn images.