Science Forum: How failure to falsify in high-volume science contributes to the replication crisis

  1. Sarah M Rajtmajer
  2. Timothy M Errington
  3. Frank G Hillary  Is a corresponding author
  1. Pennsylvania State University, United States
  2. Center for Open Science, United States

Abstract

The number of scientific papers published every year continues to increase, but scientific knowledge is not progressing at the same rate. Here we argue that a greater emphasis on falsification - the direct testing of strong hypotheses - would lead to faster progress by allowing well-specified hypotheses to be eliminated. We describe an example from neuroscience where there has been little work to directly test two prominent but incompatible hypotheses related to traumatic brain injury. Based on this example, we discuss how building strong hypotheses and then setting out to falsify them can bring greater precision to the clinical neurosciences, and argue that this approach could be beneficial to all areas of science.

Data availability

There are no data associated with this article.

Article and author information

Author details

  1. Sarah M Rajtmajer

    College of Information Sciences and Technology, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1464-0848
  2. Timothy M Errington

    Center for Open Science, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4959-5143
  3. Frank G Hillary

    Department of Psychology, Pennsylvania State University, University Park, United States
    For correspondence
    fhillary@psu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1427-0218

Funding

The authors declare that there was no funding for this work.

Copyright

© 2022, Rajtmajer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,050
    views
  • 491
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah M Rajtmajer
  2. Timothy M Errington
  3. Frank G Hillary
(2022)
Science Forum: How failure to falsify in high-volume science contributes to the replication crisis
eLife 11:e78830.
https://doi.org/10.7554/eLife.78830
  1. Further reading

Further reading

    1. Neuroscience
    Silas E Busch, Christian Hansel
    Research Article

    Purkinje cell (PC) dendrites are optimized to integrate the vast cerebellar input array and drive the sole cortical output. PCs are classically seen as stereotypical computational units, yet mouse PCs are morphologically diverse and those with multi-branched structure can receive non-canonical climbing fiber (CF) multi-innervation that confers independent compartment-specific signaling. While otherwise uncharacterized, human PCs are universally multi-branched. Do they exceed allometry to achieve enhanced integrative capacities relative to mouse PCs? To answer this, we used several comparative histology techniques in adult human and mouse to analyze cellular morphology, parallel fiber (PF) and CF input arrangement, and regional PC demographics. Human PCs are substantially larger than previously described; they exceed allometric constraint by cortical thickness and are the largest neuron in the brain with 6–7 cm total dendritic length. Unlike mouse, human PC dendrites ramify horizontally to form a multi-compartment motif that we show can receive multiple CFs. Human spines are denser (6.9 vs 4.9 spines/μm), larger (~0.36 vs 0.29 μm), and include an unreported ‘spine cluster’ structure—features that may be congruent with enhanced PF association and amplification as human-specific adaptations. By extrapolation, human PCs may receive 500,000 to 1 million synaptic inputs compared with 30–40,000 in mouse. Collectively, human PC morphology and input arrangement is quantitatively and qualitatively distinct from rodent. Multi-branched PCs are more prevalent in posterior and lateral cerebellum, co-varying with functional boundaries, supporting the hypothesis that this morphological motif permits expanded input multiplexing and may subserve task-dependent needs for input association.

    1. Neuroscience
    Phillip P Witkowski, Lindsay JH Rondot ... Erie Boorman
    Research Article

    Adaptive behavior in complex environments critically relies on the ability to appropriately link specific choices or actions to their outcomes. However, the neural mechanisms that support the ability to credit only those past choices believed to have caused the observed outcomes remain unclear. Here, we leverage multivariate pattern analyses of functional magnetic resonance imaging (fMRI) data and an adaptive learning task to shed light on the underlying neural mechanisms of such specific credit assignment. We find that the lateral orbitofrontal cortex (lOFC) and hippocampus (HC) code for the causal choice identity when credit needs to be assigned for choices that are separated from outcomes by a long delay, even when this delayed transition is punctuated by interim decisions. Further, we show when interim decisions must be made, learning is additionally supported by lateral frontopolar cortex (lFPC). Our results indicate that lFPC holds previous causal choices in a ‘pending’ state until a relevant outcome is observed, and the fidelity of these representations predicts the fidelity of subsequent causal choice representations in lOFC and HC during credit assignment. Together, these results highlight the importance of the timely reinstatement of specific causes in lOFC and HC in learning choice-outcome relationships when delays and choices intervene, a critical component of real-world learning and decision making.