Science Forum: How failure to falsify in high-volume science contributes to the replication crisis

  1. Sarah M Rajtmajer
  2. Timothy M Errington
  3. Frank G Hillary  Is a corresponding author
  1. Pennsylvania State University, United States
  2. Center for Open Science, United States

Abstract

The number of scientific papers published every year continues to increase, but scientific knowledge is not progressing at the same rate. Here we argue that a greater emphasis on falsification - the direct testing of strong hypotheses - would lead to faster progress by allowing well-specified hypotheses to be eliminated. We describe an example from neuroscience where there has been little work to directly test two prominent but incompatible hypotheses related to traumatic brain injury. Based on this example, we discuss how building strong hypotheses and then setting out to falsify them can bring greater precision to the clinical neurosciences, and argue that this approach could be beneficial to all areas of science.

Data availability

There are no data associated with this article.

Article and author information

Author details

  1. Sarah M Rajtmajer

    College of Information Sciences and Technology, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1464-0848
  2. Timothy M Errington

    Center for Open Science, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4959-5143
  3. Frank G Hillary

    Department of Psychology, Pennsylvania State University, University Park, United States
    For correspondence
    fhillary@psu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1427-0218

Funding

The authors declare that there was no funding for this work.

Reviewing Editor

  1. Peter Rodgers, eLife, United Kingdom

Publication history

  1. Received: March 22, 2022
  2. Accepted: July 28, 2022
  3. Accepted Manuscript published: August 8, 2022 (version 1)
  4. Version of Record published: August 23, 2022 (version 2)

Copyright

© 2022, Rajtmajer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,567
    Page views
  • 448
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah M Rajtmajer
  2. Timothy M Errington
  3. Frank G Hillary
(2022)
Science Forum: How failure to falsify in high-volume science contributes to the replication crisis
eLife 11:e78830.
https://doi.org/10.7554/eLife.78830

Further reading

    1. Developmental Biology
    2. Neuroscience
    Kenneth Kin Lam Wong, Tongchao Li ... Liqun Luo
    Research Article

    How does wiring specificity of neural maps emerge during development? Formation of the adult Drosophila olfactory glomerular map begins with patterning of projection neuron (PN) dendrites at the early pupal stage. To better understand the origin of wiring specificity of this map, we created genetic tools to systematically characterize dendrite patterning across development at PN type-specific resolution. We find that PNs use lineage and birth order combinatorially to build the initial dendritic map. Specifically, birth order directs dendrite targeting in rotating and binary manners for PNs of the anterodorsal and lateral lineages, respectively. Two-photon- and adaptive optical lattice light-sheet microscope-based time-lapse imaging reveals that PN dendrites initiate active targeting with direction-dependent branch stabilization on the timescale of seconds. Moreover, PNs that are used in both the larval and adult olfactory circuits prune their larval-specific dendrites and re-extend new dendrites simultaneously to facilitate timely olfactory map organization. Our work highlights the power and necessity of type-specific neuronal access and time-lapse imaging in identifying wiring mechanisms that underlie complex patterns of functional neural maps.

    1. Neuroscience
    Benjamin D Pedigo, Mike Powell ... Joshua T Vogelstein
    Research Article

    Comparing connectomes can help explain how neural connectivity is related to genetics, disease, development, learning, and behavior. However, making statistical inferences about the significance and nature of differences between two networks is an open problem, and such analysis has not been extensively applied to nanoscale connectomes. Here, we investigate this problem via a case study on the bilateral symmetry of a larval Drosophila brain connectome. We translate notions of'bilateral symmetry' to generative models of the network structure of the left and right hemispheres, allowing us to test and refine our understanding of symmetry. We find significant differences in connection probabilities both across the entire left and right networks and between specific cell types. By rescaling connection probabilities or removing certain edges based on weight, we also present adjusted definitions of bilateral symmetry exhibited by this connectome. This work shows how statistical inferences from networks can inform the study of connectomes, facilitating future comparisons of neural structures.