Dynamic proteomic and phosphoproteomic atlas of corticostriatal axons in neurodevelopment
Abstract
Mammalian axonal development begins in embryonic stages and continues postnatally. After birth, axonal proteomic landscape changes rapidly, coordinated by transcription, protein turnover, and post-translational modifications. Comprehensive profiling of axonal proteomes across neurodevelopment is limited, with most studies lacking cell-type and neural circuit specificity, resulting in substantial information loss. We create a Cre-dependent APEX2 reporter mouse line and map cell-type specific proteome of corticostriatal projections across postnatal development. We synthesize analysis frameworks to define temporal patterns of axonal proteome and phosphoproteome, identifying co-regulated proteins and phosphorylations associated with genetic risk for human brain disorders. We discover proline-directed kinases as major developmental regulators. APEX2 transgenic reporter proximity labeling offers flexible strategies for subcellular proteomics with cell type specificity in early neurodevelopment, a critical period for neuropsychiatric disease.
Data availability
Mass spectrometry raw data have been deposited in the PRIDE database (accession number: PXD030864. Code is available at Github (link in Materials and Methods). All analyzed proteomics results are also included as supplementary files. All uncropped gels and blots are included as source data.
Article and author information
Author details
Funding
National Institute of Mental Health (R56MH113923)
- Yevgenia Kozorovitskiy
American Heart Association (19PRE34380056)
- Vasin Dumrongprechachan
National Institute of General Medical Sciences (2T32GM15538)
- Vasin Dumrongprechachan
National Institute of Neurological Disorders and Stroke (R01NS107539)
- Yevgenia Kozorovitskiy
National Institute of Mental Health (R01MH117111)
- Yevgenia Kozorovitskiy
National Science Foundation (1846234)
- Yevgenia Kozorovitskiy
Arnold and Mabel Beckman Foundation (Beckman Young Investigator Award)
- Yevgenia Kozorovitskiy
Kinship Foundation (Searle Scholar Award)
- Yevgenia Kozorovitskiy
Rita Allen Foundation (Rita Allen Foundation Scholar Award)
- Yevgenia Kozorovitskiy
Alfred P. Sloan Foundation (Sloan Research Fellowship)
- Yevgenia Kozorovitskiy
National Institute of Mental Health (R01MH118497)
- Matthew L MacDonald
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Animals were handled according to protocols approved by the Northwestern University AnimalCare and Use Committee. (protocol number: IS00008060).
Copyright
© 2022, Dumrongprechachan et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,197
- views
-
- 363
- downloads
-
- 9
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Chromosomes and Gene Expression
- Neuroscience
Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.
-
- Neuroscience
Memories are stored as ensembles of engram neurons and their successful recall involves the reactivation of these cellular networks. However, significant gaps remain in connecting these cell ensembles with the process of forgetting. Here, we utilized a mouse model of object memory and investigated the conditions in which a memory could be preserved, retrieved, or forgotten. Direct modulation of engram activity via optogenetic stimulation or inhibition either facilitated or prevented the recall of an object memory. In addition, through behavioral and pharmacological interventions, we successfully prevented or accelerated forgetting of an object memory. Finally, we showed that these results can be explained by a computational model in which engrams that are subjectively less relevant for adaptive behavior are more likely to be forgotten. Together, these findings suggest that forgetting may be an adaptive form of engram plasticity which allows engrams to switch from an accessible state to an inaccessible state.