Murine endothelial serine palmitoyltransferase 1 (SPTLC1) is required for vascular development and systemic sphingolipid homeostasis

  1. Andrew Kuo
  2. Antonio Checa
  3. Colin Niaudet
  4. Bongnam Jung
  5. Zhongjie Fu
  6. Craig E Wheelock
  7. Sasha A Singh
  8. Masanori Aikawa
  9. Lois EH Smith
  10. Richard L Proia
  11. Timothy Hla  Is a corresponding author
  1. Boston Children's Hospital, United States
  2. Karolinska Institute, Sweden
  3. Brigham and Women's Hospital, United States
  4. National Institute of Diabetes and Digestive and Kidney Diseases, United States

Abstract

Serine palmitoyl transferase (SPT), the rate-limiting enzyme in the de novo synthesis of sphingolipids (SL), is needed for embryonic development, physiological homeostasis, and response to stress. The functions of de novo SL synthesis in vascular endothelial cells (EC), which line the entire circulatory system, are not well understood. Here we show that the de novo SL synthesis in EC not only regulates vascular development but also maintains circulatory and peripheral organ SL levels. Mice with an endothelial-specific gene knockout of SPTLC1 (Sptlc1 ECKO), an essential subunit of the SPT complex, exhibited reduced EC proliferation and tip/stalk cell differentiation, resulting in delayed retinal vascular development. In addition, Sptlc1 ECKO mice had reduced retinal neovascularization in the oxygen-induced retinopathy model. Mechanistic studies suggest that EC SL produced from the de novo pathway are needed for lipid raft formation and efficient VEGF signaling. Post-natal deletion of the EC Sptlc1 also showed rapid reduction of several SL metabolites in plasma, red blood cells, and peripheral organs (lung and liver) but not in the retina, part of the central nervous system (CNS). In the liver, EC de novo SL synthesis was important for acetaminophen-induced rapid ceramide elevation and hepatotoxicity. These results suggest that EC-derived SL metabolites are in constant flux between the vasculature, circulatory elements, and parenchymal cells of non-CNS organs. Taken together, our data point to the central role of the endothelial SL biosynthesis in maintaining vascular development, neovascular proliferation, non-CNS tissue metabolic homeostasis, and hepatocyte response to stress.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for each figure.

Article and author information

Author details

  1. Andrew Kuo

    Vascular Biology Program, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7263-8658
  2. Antonio Checa

    Unit of Integrative Metabolomics, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  3. Colin Niaudet

    Vascular Biology Program, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  4. Bongnam Jung

    Vascular Biology Program, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  5. Zhongjie Fu

    Department of Ophthalmology, Boston Children's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8182-2983
  6. Craig E Wheelock

    Unit of Integrative Metabolomics, Karolinska Institute, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8113-0653
  7. Sasha A Singh

    Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  8. Masanori Aikawa

    Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9275-2079
  9. Lois EH Smith

    Department of Ophthalmology, Boston Children's Hospital, Boston, United States
    Competing interests
    Lois EH Smith, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7644-6410
  10. Richard L Proia

    Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0456-1270
  11. Timothy Hla

    Vascular Biology Program, Boston Children's Hospital, Boston, United States
    For correspondence
    timothy.hla@childrens.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8355-4065

Funding

American Heart Association (Postdoctoral Fellowship,18POST33990339)

  • Andrew Kuo

National Heart, Lung, and Blood Institute (R35,HL135821)

  • Timothy Hla

National Eye Institute (R01,EY031715)

  • Timothy Hla

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendationsin the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All ofthe animals were handled according to approved institutional animal care and use committee(IACUC) protocols (#19-10-4031R) of the Boston Children's Hospital. Every effort was made to minimize suffering.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,335
    views
  • 263
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew Kuo
  2. Antonio Checa
  3. Colin Niaudet
  4. Bongnam Jung
  5. Zhongjie Fu
  6. Craig E Wheelock
  7. Sasha A Singh
  8. Masanori Aikawa
  9. Lois EH Smith
  10. Richard L Proia
  11. Timothy Hla
(2022)
Murine endothelial serine palmitoyltransferase 1 (SPTLC1) is required for vascular development and systemic sphingolipid homeostasis
eLife 11:e78861.
https://doi.org/10.7554/eLife.78861

Share this article

https://doi.org/10.7554/eLife.78861

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sarah Rubin, Ankit Agrawal ... Elazar Zelzer
    Research Article

    Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.

    1. Cell Biology
    2. Immunology and Inflammation
    Daniel M Williams, Andrew A Peden
    Research Article

    NLRP3 is an inflammasome seeding pattern recognition receptor activated in response to multiple danger signals which perturb intracellular homeostasis. Electrostatic interactions between the NLRP3 polybasic (PB) region and negatively charged lipids on the trans-Golgi network (TGN) have been proposed to recruit NLRP3 to the TGN. In this study, we demonstrate that membrane association of NLRP3 is critically dependant on S-acylation of a highly conserved cysteine residue (Cys-130), which traps NLRP3 in a dynamic S-acylation cycle at the Golgi, and a series of hydrophobic residues preceding Cys-130 which act in conjunction with the PB region to facilitate Cys-130 dependent Golgi enrichment. Due to segregation from Golgi localised thioesterase enzymes caused by a nigericin induced breakdown in Golgi organisation and function, NLRP3 becomes immobilised on the Golgi through reduced de-acylation of its Cys-130 lipid anchor, suggesting that disruptions in Golgi homeostasis are conveyed to NLRP3 through its acylation state. Thus, our work defines a nigericin sensitive S-acylation cycle that gates access of NLRP3 to the Golgi.