A timer gene network is spatially regulated by the terminal system in the Drosophila embryo

  1. Erik Clark  Is a corresponding author
  2. Margherita Battistara
  3. Matthew Alan Benton  Is a corresponding author
  1. University of Cambridge, United Kingdom

Abstract

In insect embryos, anteroposterior patterning is coordinated by the sequential expression of the 'timer' genes caudal, Dichaete and odd-paired, whose expression dynamics correlate with the mode of segmentation. In Drosophila, the timer genes are expressed broadly across much of the blastoderm, which segments simultaneously, but their expression is delayed in a small 'tail' region, just anterior to the hindgut, which segments during germband extension. Specification of the tail and the hindgut depends on the terminal gap gene tailless, but beyond this the regulation of the timer genes is poorly understood. We used a combination of multiplexed imaging, mutant analysis, and gene network modelling to resolve the regulation of the timer genes, identifying 11 new regulatory interactions and clarifying the mechanism of posterior terminal patterning. We propose that a dynamic Tailless expression gradient modulates the intrinsic dynamics of a timer gene cross-regulatorymodule, delineating the tail region and delaying its developmental maturation.

Data availability

All necessary data are included in the main text, appendices, and supplementary information. The confocal imaging dataset on which this study is based is freely available to download from the BioImage Archive (http://www.ebi.ac.uk/bioimage-archive) under accession number S-BIAD582. This 335 GB dataset contains multiplexed image stacks of more than 800 individual embryos, including 12 different genotypes and over 50 different genotype / gene product combinations. Image analysis code is provided Appendix 2-Figure 1-source data 1. A list of the corresponding image file(s) within the dataset for all figure panels within the main text, appendices, and supplementary information is provided in Appendix 2-Figure 1-source data 2. Source Data files are provided for the expression traces in the main and supplementary figures.

The following data sets were generated

Article and author information

Author details

  1. Erik Clark

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    ec491@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5588-796X
  2. Margherita Battistara

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew Alan Benton

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    matthewabenton@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7953-0765

Funding

Biotechnology and Biological Sciences Research Council (Research Grant BB/P009336/1)

  • Erik Clark

Trinity College, University of Cambridge (Junior Research Fellowship)

  • Erik Clark

European Molecular Biology Organization (Postodoctoral Fellowship ALTF 383-2018)

  • Erik Clark

Deutsche Forschungsgemeinschaft (Research Fellowship BE 6732/1-1)

  • Matthew Alan Benton

Isaac Newton Trust (Research Grant)

  • Matthew Alan Benton

Department of Zoology, University of Cambridge

  • Matthew Alan Benton

Wellcome Trust (PhD Studentship)

  • Margherita Battistara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Clark et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,546
    views
  • 265
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erik Clark
  2. Margherita Battistara
  3. Matthew Alan Benton
(2022)
A timer gene network is spatially regulated by the terminal system in the Drosophila embryo
eLife 11:e78902.
https://doi.org/10.7554/eLife.78902

Share this article

https://doi.org/10.7554/eLife.78902

Further reading

    1. Developmental Biology
    Shannon H Carroll, Sogand Schafer ... Eric C Liao
    Research Article

    Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension (CE) during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar CE defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2-specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Overexpression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.

    1. Developmental Biology
    Dena Goldblatt, Basak Rosti ... David Schoppik
    Research Article

    Sensorimotor reflex circuits engage distinct neuronal subtypes, defined by precise connectivity, to transform sensation into compensatory behavior. Whether and how motor neuron populations specify the subtype fate and/or sensory connectivity of their pre-motor partners remains controversial. Here, we discovered that motor neurons are dispensable for proper connectivity in the vestibular reflex circuit that stabilizes gaze. We first measured activity following vestibular sensation in pre-motor projection neurons after constitutive loss of their extraocular motor neuron partners. We observed normal responses and topography indicative of unchanged functional connectivity between sensory neurons and projection neurons. Next, we show that projection neurons remain anatomically and molecularly poised to connect appropriately with their downstream partners. Lastly, we show that the transcriptional signatures that typify projection neurons develop independently of motor partners. Our findings comprehensively overturn a long-standing model: that connectivity in the circuit for gaze stabilization is retrogradely determined by motor partner-derived signals. By defining the contribution of motor neurons to specification of an archetypal sensorimotor circuit, our work speaks to comparable processes in the spinal cord and advances our understanding of principles of neural development.