A timer gene network is spatially regulated by the terminal system in the Drosophila embryo

  1. Erik Clark  Is a corresponding author
  2. Margherita Battistara
  3. Matthew Alan Benton  Is a corresponding author
  1. University of Cambridge, United Kingdom

Abstract

In insect embryos, anteroposterior patterning is coordinated by the sequential expression of the 'timer' genes caudal, Dichaete and odd-paired, whose expression dynamics correlate with the mode of segmentation. In Drosophila, the timer genes are expressed broadly across much of the blastoderm, which segments simultaneously, but their expression is delayed in a small 'tail' region, just anterior to the hindgut, which segments during germband extension. Specification of the tail and the hindgut depends on the terminal gap gene tailless, but beyond this the regulation of the timer genes is poorly understood. We used a combination of multiplexed imaging, mutant analysis, and gene network modelling to resolve the regulation of the timer genes, identifying 11 new regulatory interactions and clarifying the mechanism of posterior terminal patterning. We propose that a dynamic Tailless expression gradient modulates the intrinsic dynamics of a timer gene cross-regulatorymodule, delineating the tail region and delaying its developmental maturation.

Data availability

All necessary data are included in the main text, appendices, and supplementary information. The confocal imaging dataset on which this study is based is freely available to download from the BioImage Archive (http://www.ebi.ac.uk/bioimage-archive) under accession number S-BIAD582. This 335 GB dataset contains multiplexed image stacks of more than 800 individual embryos, including 12 different genotypes and over 50 different genotype / gene product combinations. Image analysis code is provided Appendix 2-Figure 1-source data 1. A list of the corresponding image file(s) within the dataset for all figure panels within the main text, appendices, and supplementary information is provided in Appendix 2-Figure 1-source data 2. Source Data files are provided for the expression traces in the main and supplementary figures.

The following data sets were generated

Article and author information

Author details

  1. Erik Clark

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    ec491@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5588-796X
  2. Margherita Battistara

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Matthew Alan Benton

    Department of Zoology, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    matthewabenton@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7953-0765

Funding

Biotechnology and Biological Sciences Research Council (Research Grant BB/P009336/1)

  • Erik Clark

Trinity College, University of Cambridge (Junior Research Fellowship)

  • Erik Clark

European Molecular Biology Organization (Postodoctoral Fellowship ALTF 383-2018)

  • Erik Clark

Deutsche Forschungsgemeinschaft (Research Fellowship BE 6732/1-1)

  • Matthew Alan Benton

Isaac Newton Trust (Research Grant)

  • Matthew Alan Benton

Department of Zoology, University of Cambridge

  • Matthew Alan Benton

Wellcome Trust (PhD Studentship)

  • Margherita Battistara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Gáspár Jékely, University of Exeter, United Kingdom

Version history

  1. Preprint posted: January 27, 2022 (view preprint)
  2. Received: March 23, 2022
  3. Accepted: December 15, 2022
  4. Accepted Manuscript published: December 16, 2022 (version 1)
  5. Version of Record published: March 31, 2023 (version 2)

Copyright

© 2022, Clark et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,326
    views
  • 259
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erik Clark
  2. Margherita Battistara
  3. Matthew Alan Benton
(2022)
A timer gene network is spatially regulated by the terminal system in the Drosophila embryo
eLife 11:e78902.
https://doi.org/10.7554/eLife.78902

Share this article

https://doi.org/10.7554/eLife.78902

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.