Learning of probabilistic punishment as a model of anxiety produces changes in action but not punisher encoding in the dmPFC and VTA

  1. David S Jacobs
  2. Madeleine C Allen
  3. Junchol Park
  4. Bita Moghaddam  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Janelia Research Campus, United States

Abstract

Previously, we developed a novel model for anxiety during motivated behavior by training rats to perform a task where actions executed to obtain a reward were probabilistically punished and observed that after learning, neuronal activity in the ventral tegmental area (VTA) and dorsomedial prefrontal cortex (dmPFC) represent the relationship between action and punishment risk (Park & Moghaddam, 2017). Here we used male and female rats to expand on the previous work by focusing on neural changes in the dmPFC and VTA that were associated with the learning of probabilistic punishment, and anxiolytic treatment with diazepam after learning. We find that adaptive neural responses of dmPFC and VTA during the learning of anxiogenic contingencies are independent from the punisher experience and occur primarily during the peri-action and reward period. Our results also identify peri-action ramping of VTA neural calcium activity, and VTA-dmPFC correlated activity, as potential markers for the anxiolytic properties of diazepam.

Data availability

Data generated for analyses has been deposited on Dryad. Source code for analysis is available on github (https://github.com/MoghaddamLab).

The following data sets were generated

Article and author information

Author details

  1. David S Jacobs

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Madeleine C Allen

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Junchol Park

    Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bita Moghaddam

    Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, United States
    For correspondence
    bita@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5205-417X

Funding

National Institute of Mental Health (MH115026)

  • Bita Moghaddam

National Institute on Drug Abuse (DA007262)

  • David S Jacobs
  • Madeleine C Allen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Geoffrey Schoenbaum, National Institute on Drug Abuse, National Institutes of Health, United States

Ethics

Animal experimentation: All experimental procedures were approved by the OHSU Institutional Animal Use and Care Committee (Protocol #: 15065884) and were conducted in accordance with National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Version history

  1. Preprint posted: March 29, 2022 (view preprint)
  2. Received: March 29, 2022
  3. Accepted: August 30, 2022
  4. Accepted Manuscript published: September 14, 2022 (version 1)
  5. Version of Record published: September 30, 2022 (version 2)

Copyright

© 2022, Jacobs et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,087
    views
  • 293
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David S Jacobs
  2. Madeleine C Allen
  3. Junchol Park
  4. Bita Moghaddam
(2022)
Learning of probabilistic punishment as a model of anxiety produces changes in action but not punisher encoding in the dmPFC and VTA
eLife 11:e78912.
https://doi.org/10.7554/eLife.78912

Share this article

https://doi.org/10.7554/eLife.78912

Further reading

    1. Neuroscience
    Noah J Steinberg, Zvi N Roth ... Elisha Merriam
    Research Article

    In the ‘double-drift’ illusion, local motion within a window moving in the periphery of the visual field alters the window’s perceived path. The illusion is strong even when the eyes track a target whose motion matches the window so that the stimulus remains stable on the retina. This implies that the illusion involves the integration of retinal signals with non-retinal eye-movement signals. To identify where in the brain this integration occurs, we measured BOLD fMRI responses in visual cortex while subjects experienced the double-drift illusion. We then used a combination of univariate and multivariate decoding analyses to identify (1) which brain areas were sensitive to the illusion and (2) whether these brain areas contained information about the illusory stimulus trajectory. We identified a number of cortical areas that responded more strongly during the illusion than a control condition that was matched for low-level stimulus properties. Only in area hMT+ was it possible to decode the illusory trajectory. We additionally performed a number of important controls that rule out possible low-level confounds. Concurrent eye tracking confirmed that subjects accurately tracked the moving target; we were unable to decode the illusion trajectory using eye position measurements recorded during fMRI scanning, ruling out explanations based on differences in oculomotor behavior. Our results provide evidence for a perceptual representation in human visual cortex that incorporates extraretinal information.

    1. Neuroscience
    Evan D Vickers, David A McCormick
    Tools and Resources

    The flow of neural activity across the neocortex during active sensory discrimination is constrained by task-specific cognitive demands, movements, and internal states. During behavior, the brain appears to sample from a broad repertoire of activation motifs. Understanding how these patterns of local and global activity are selected in relation to both spontaneous and task-dependent behavior requires in-depth study of densely sampled activity at single neuron resolution across large regions of cortex. In a significant advance toward this goal, we developed procedures to record mesoscale 2-photon Ca2+ imaging data from two novel in vivo preparations that, between them, allow for simultaneous access to nearly all 0f the mouse dorsal and lateral neocortex. As a proof of principle, we aligned neural activity with both behavioral primitives and high-level motifs to reveal the existence of large populations of neurons that coordinated their activity across cortical areas with spontaneous changes in movement and/or arousal. The methods we detail here facilitate the identification and exploration of widespread, spatially heterogeneous neural ensembles whose activity is related to diverse aspects of behavior.