Pigment cell progenitor heterogeneity and reiteration of developmental signaling underlie melanocyte regeneration in zebrafish

Abstract

Tissue-resident stem and progenitor cells are present in many adult organs, where they are important for organ homeostasis and repair in response to injury. However, the signals that activate these cells and the mechanisms governing how these cells renew or differentiate are highly context-dependent and incompletely understood, particularly in non-hematopoietic tissues. In the skin, melanocyte stem and progenitor cells are responsible for replenishing mature pigmented melanocytes. In mammals, these cells reside in the hair follicle bulge and bulb niches where they are activated during homeostatic hair follicle turnover and following melanocyte destruction, as occurs in vitiligo and other skin hypopigmentation disorders. Recently, we identified melanocyte progenitors in adult zebrafish skin. To elucidate mechanisms governing melanocyte progenitor renewal and differentiation we analyzed individual transcriptomes from thousands of melanocyte lineage cells during the regeneration process. We identified transcriptional signatures for progenitors, deciphered transcriptional changes and intermediate cell states during regeneration, and analyzed cell-cell signaling changes to discover mechanisms governing melanocyte regeneration. We identified KIT signaling via the RAS/MAPK pathway as a regulator of melanocyte progenitor direct differentiation and asymmetric division. Our findings show how activation of different subpopulations of mitfa-positive cells underlies cellular transitions required to properly reconstitute the melanocyte pigmentary system following injury.

Data availability

Sequencing data have been deposited in GEO under accession code: GSE190115.Other Source Data files have been provided for individual figures.

The following data sets were generated

Article and author information

Author details

  1. William Tyler Frantz

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1207-9652
  2. Sharanya Iyengar PhD

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. James Neiswender PhD

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alyssa Cousineau

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. René Maehr

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9520-3382
  6. Craig J Ceol

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    craig.ceol@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7188-7580

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01 AR081355)

  • William Tyler Frantz
  • Craig J Ceol

National Institute of General Medical Sciences (T32 GM107000)

  • William Tyler Frantz

National Cancer Institute (T32 CA130807)

  • William Tyler Frantz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Zebrafish were handled in accordance with protocols approved by the University of Massachusetts Medical School IACUC protocol (A-2171). For procedures, including imaging and genotyping, animals were anesthetized in 0.17% tricaine or euthanized by overdose of tricaine. Every effort was made to minimize suffering.

Copyright

© 2023, Frantz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,322
    views
  • 181
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William Tyler Frantz
  2. Sharanya Iyengar PhD
  3. James Neiswender PhD
  4. Alyssa Cousineau
  5. René Maehr
  6. Craig J Ceol
(2023)
Pigment cell progenitor heterogeneity and reiteration of developmental signaling underlie melanocyte regeneration in zebrafish
eLife 12:e78942.
https://doi.org/10.7554/eLife.78942

Share this article

https://doi.org/10.7554/eLife.78942

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Ruben Sebastian-Perez, Shoma Nakagawa ... Maria Pia Cosma
    Research Article

    Chromocenters are established after the 2-cell (2C) stage during mouse embryonic development, but the factors that mediate chromocenter formation remain largely unknown. To identify regulators of 2C heterochromatin establishment in mice, we generated an inducible system to convert embryonic stem cells (ESCs) to 2C-like cells. This conversion is marked by a global reorganization and dispersion of H3K9me3-heterochromatin foci, which are then reversibly formed upon re-entry into pluripotency. By profiling the chromatin-bound proteome (chromatome) through genome capture of ESCs transitioning to 2C-like cells, we uncover chromatin regulators involved in de novo heterochromatin formation. We identified TOPBP1 and investigated its binding partner SMARCAD1. SMARCAD1 and TOPBP1 associate with H3K9me3-heterochromatin in ESCs. Interestingly, the nuclear localization of SMARCAD1 is lost in 2C-like cells. SMARCAD1 or TOPBP1 depletion in mouse embryos leads to developmental arrest, reduction of H3K9me3, and remodeling of heterochromatin foci. Collectively, our findings contribute to comprehending the maintenance of chromocenters during early development.

    1. Developmental Biology
    Yunfei Mu, Shijia Hu ... Hongjun Shi
    Research Article

    Notch signaling has been identified as a key regulatory pathway in patterning the endocardium through activation of endothelial-to-mesenchymal transition (EMT) in the atrioventricular canal (AVC) and proximal outflow tract (OFT) region. However, the precise mechanism underlying Notch activation remains elusive. By transiently blocking the heartbeat of E9.5 mouse embryos, we found that Notch activation in the arterial endothelium was dependent on its ligand Dll4, whereas the reduced expression of Dll4 in the endocardium led to a ligand-depleted field, enabling Notch to be specifically activated in AVC and OFT by regional increased shear stress. The strong shear stress altered the membrane lipid microdomain structure of endocardial cells, which activated mTORC2 and PKC and promoted Notch1 cleavage even in the absence of strong ligand stimulation. These findings highlight the role of mechanical forces as a primary cue for endocardial patterning and provide insights into the mechanisms underlying congenital heart diseases of endocardial origin.