Differentiated glioma cell-derived Fibromodulin activates Integrin-dependent Notch signaling in endothelial cells to promote tumor angiogenesis and growth

  1. Shreoshi Sengupta
  2. Mainak Mondal
  3. Kaval Reddy Prasasvi
  4. Arani Mukherjee
  5. Prerna Magod
  6. Serge Urbach
  7. Dinorah Friedmann-Morvinski  Is a corresponding author
  8. Philippe Marin  Is a corresponding author
  9. Kumaravel Somasundaram  Is a corresponding author
  1. Indian Institute of Science Bangalore, India
  2. Tel Aviv University, Israel
  3. Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, France

Abstract

Cancer stem cells (CSCs) alone can initiate and maintain tumors, but the function of non-cancer stem cells (non-CSCs) that form the tumor bulk remains poorly understood. Proteomic analysis showed a higher abundance of the extracellular matrix small leucine-rich proteoglycan Fibromodulin (FMOD) in the conditioned medium of differentiated glioma cells (DGCs), the equivalent of glioma non-CSCs, compared to that of glioma stem-like cells (GSCs). DGCs silenced for FMOD fail to cooperate with co-implanted GSCs to promote tumor growth. FMOD downregulation neither affects GSC growth and differentiation nor DGC growth and reprogramming in vitro. DGC-secreted FMOD promotes angiogenesis by activating Integrin-dependent Notch signaling in endothelial cells. Furthermore, conditional silencing of FMOD in newly generated DGCs in vivo inhibits the growth of GSC-initiated tumors due to poorly developed vasculature and increases mouse survival. Collectively, these findings demonstrate that DGC-secreted FMOD promotes glioma tumor angiogenesis and growth through paracrine signaling in endothelial cells and identifies a DGC-produced protein as a potential therapeutic target in glioma.

Data availability

Label-free mass spectrometry data between the GSC and DGC showing protein ratios in the GSC and DGC secretome and p values are shown in Supplementary File 1 for proteins exhibiting significant differences in abundance in both conditions. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD032958.

Article and author information

Author details

  1. Shreoshi Sengupta

    Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Mainak Mondal

    Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Kaval Reddy Prasasvi

    Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Arani Mukherjee

    Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Prerna Magod

    School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Serge Urbach

    Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Dinorah Friedmann-Morvinski

    School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
    For correspondence
    dino@tauex.tau.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6394-9876
  8. Philippe Marin

    Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
    For correspondence
    philippe.marin@igf.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5977-7274
  9. Kumaravel Somasundaram

    Department of Microbiology and Cell Biology, Indian Institute of Science Bangalore, Bangalore, India
    For correspondence
    skumar1@iisc.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6228-9741

Funding

Department of Biotechnology, Ministry of Science and Technology, India

  • Kumaravel Somasundaram

Department of Science and Technology, Ministry of Science and Technology, India

  • Kumaravel Somasundaram

Indo-French Centre for the Promotion of Advanced Research (n{degree sign} IFC/5603-C/2016/503)

  • Kumaravel Somasundaram

Israel Science Foundation (Grant no.1315/15 and 1429/20)

  • Dinorah Friedmann-Morvinski

Fondation pour la Recherche Médicale

  • Philippe Marin

Indo-French Centre for the Promotion of Advanced Research (n{degree sign} IFC/5603-C/2016/503)

  • Philippe Marin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The Institute Ethical Committee for Animal Experimentation (Institute Animal Ethics Committee [IAEC] Project Number: CAF/Ethics/752/2020)

Copyright

© 2022, Sengupta et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,003
    views
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shreoshi Sengupta
  2. Mainak Mondal
  3. Kaval Reddy Prasasvi
  4. Arani Mukherjee
  5. Prerna Magod
  6. Serge Urbach
  7. Dinorah Friedmann-Morvinski
  8. Philippe Marin
  9. Kumaravel Somasundaram
(2022)
Differentiated glioma cell-derived Fibromodulin activates Integrin-dependent Notch signaling in endothelial cells to promote tumor angiogenesis and growth
eLife 11:e78972.
https://doi.org/10.7554/eLife.78972

Share this article

https://doi.org/10.7554/eLife.78972

Further reading

    1. Cancer Biology
    2. Cell Biology
    Brooke A Conti, Leo Novikov ... Mariano Oppikofer
    Research Article

    DNA base lesions, such as incorporation of uracil into DNA or base mismatches, can be mutagenic and toxic to replicating cells. To discover factors in repair of genomic uracil, we performed a CRISPR knockout screen in the presence of floxuridine, a chemotherapeutic agent that incorporates uracil and fluorouracil into DNA. We identified known factors, such as uracil DNA N-glycosylase (UNG), and unknown factors, such as the N6-adenosine methyltransferase, METTL3, as required to overcome floxuridine-driven cytotoxicity. Visualized with immunofluorescence, the product of METTL3 activity, N6-methyladenosine, formed nuclear foci in cells treated with floxuridine. The observed N6-methyladenosine was embedded in DNA, called 6mA, and these results were confirmed using an orthogonal approach, liquid chromatography coupled to tandem mass spectrometry. METTL3 and 6mA were required for repair of lesions driven by additional base-damaging agents, including raltitrexed, gemcitabine, and hydroxyurea. Our results establish a role for METTL3 and 6mA in promoting genome stability in mammalian cells, especially in response to base damage.

    1. Cancer Biology
    Pierluigi Scerbo, Benjamin Tisserand ... Bertrand Ducos
    Research Article

    Why does a normal cell possibly harboring genetic mutations in oncogene or tumor suppressor genes becomes malignant and develops a tumor is a subject of intense debate. Various theories have been proposed but their experimental test has been hampered by the unpredictable and improbable malignant transformation of single cells. Here, using an optogenetic approach we permanently turn on an oncogene (KRASG12V) in a single cell of a zebrafish brain that, only in synergy with the transient co-activation of a reprogramming factor (VENTX/NANOG/OCT4), undergoes a deterministic malignant transition and robustly and reproducibly develops within 6 days into a full-blown tumor. The controlled way in which a single cell can thus be manipulated to give rise to cancer lends support to the ‘ground state theory of cancer initiation’ through ‘short-range dispersal’ of the first malignant cells preceding tumor growth.