Conformational fingerprinting of allosteric modulators in metabotropic glutamate receptor 2

  1. Brandon Wey-Hung Liauw
  2. Arash Foroutan
  3. Michael R Schamber
  4. Weifeng Lu
  5. Hamid Samareh Afsari  Is a corresponding author
  6. Reza Vafabakhsh  Is a corresponding author
  1. Northwestern University, United States
  2. Boehringer Ingelheim Pharmaceuticals, Inc, United States

Abstract

Activation of G protein-coupled receptors (GPCRs) is an allosteric process. It involves conformational coupling between the orthosteric ligand binding site and the G protein binding site. Factors that bind at non-cognate ligand binding sites to alter the allosteric activation process are classified as allosteric modulators and represent a promising class of therapeutics with distinct modes of binding and action. For many receptors, how modulation of signaling is represented at the structural level is unclear. Here, we developed FRET sensors to quantify receptor modulation at each of the three structural domains of metabotropic glutamate receptor 2 (mGluR2). We identified the conformational fingerprint for several allosteric modulators in live cells. This approach enabled us to derive a receptor-centric representation of allosteric modulation and to correlate structural modulation to the standard signaling modulation metrics. Single-molecule FRET analysis revealed that a NAM increases the occupancy of one of the intermediate states while a PAM increases the occupancy of the active state. Moreover, we found that the effect of allosteric modulators on the receptor dynamics is complex and depend on the orthosteric ligand. Collectively, our findings provide a structural mechanism of allosteric modulation in mGluR2 and suggest possible strategies for design of future modulators.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Accompanying source data is provided for figures 1-4 and tables 1-3. The PDB accession codes for human mGluR2 structures used are 7MTS, 7MTR, 7E9G, 7EPE, and 7EPF.

The following previously published data sets were used

Article and author information

Author details

  1. Brandon Wey-Hung Liauw

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  2. Arash Foroutan

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  3. Michael R Schamber

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  4. Weifeng Lu

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    Competing interests
    No competing interests declared.
  5. Hamid Samareh Afsari

    Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, United States
    For correspondence
    hamid.samareh_afsari@boehringer-ingelheim.com
    Competing interests
    Hamid Samareh Afsari, is affiliated with Boehringer Ingelheim Pharma GmbH & Co. The author has no financial interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5839-4765
  6. Reza Vafabakhsh

    Department of Molecular Biosciences, Northwestern University, Evanston, United States
    For correspondence
    reza.vafabakhsh@northwestern.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8384-3203

Funding

NIGMS (R01GM140272)

  • Reza Vafabakhsh

NIGMS (T32GM-008061)

  • Brandon Wey-Hung Liauw

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Marcel P Goldschen-Ohm, University of Texas at Austin, United States

Version history

  1. Received: March 26, 2022
  2. Preprint posted: April 28, 2022 (view preprint)
  3. Accepted: June 30, 2022
  4. Accepted Manuscript published: July 1, 2022 (version 1)
  5. Version of Record published: July 20, 2022 (version 2)

Copyright

© 2022, Liauw et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,782
    views
  • 416
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Brandon Wey-Hung Liauw
  2. Arash Foroutan
  3. Michael R Schamber
  4. Weifeng Lu
  5. Hamid Samareh Afsari
  6. Reza Vafabakhsh
(2022)
Conformational fingerprinting of allosteric modulators in metabotropic glutamate receptor 2
eLife 11:e78982.
https://doi.org/10.7554/eLife.78982

Share this article

https://doi.org/10.7554/eLife.78982

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Dietmar Funck, Malte Sinn ... Jörg S Hartig
    Research Article

    Metabolism and biological functions of the nitrogen-rich compound guanidine have long been neglected. The discovery of four classes of guanidine-sensing riboswitches and two pathways for guanidine degradation in bacteria hint at widespread sources of unconjugated guanidine in nature. So far, only three enzymes from a narrow range of bacteria and fungi have been shown to produce guanidine, with the ethylene-forming enzyme (EFE) as the most prominent example. Here, we show that a related class of Fe2+- and 2-oxoglutarate-dependent dioxygenases (2-ODD-C23) highly conserved among plants and algae catalyze the hydroxylation of homoarginine at the C6-position. Spontaneous decay of 6-hydroxyhomoarginine yields guanidine and 2-aminoadipate-6-semialdehyde. The latter can be reduced to pipecolate by pyrroline-5-carboxylate reductase but more likely is oxidized to aminoadipate by aldehyde dehydrogenase ALDH7B in vivo. Arabidopsis has three 2-ODD-C23 isoforms, among which Din11 is unusual because it also accepted arginine as substrate, which was not the case for the other 2-ODD-C23 isoforms from Arabidopsis or other plants. In contrast to EFE, none of the three Arabidopsis enzymes produced ethylene. Guanidine contents were typically between 10 and 20 nmol*(g fresh weight)-1 in Arabidopsis but increased to 100 or 300 nmol*(g fresh weight)-1 after homoarginine feeding or treatment with Din11-inducing methyljasmonate, respectively. In 2-ODD-C23 triple mutants, the guanidine content was strongly reduced, whereas it increased in overexpression plants. We discuss the implications of the finding of widespread guanidine-producing enzymes in photosynthetic eukaryotes as a so far underestimated branch of the bio-geochemical nitrogen cycle and propose possible functions of natural guanidine production.