Abstract

In vertebrates, condensin I and condensin II cooperate to assemble rod-shaped chromosomes during mitosis. Although the mechanism of action and regulation of condensin I have been studied extensively, our corresponding knowledge of condensin II remains very limited. By introducing recombinant condensin II complexes into Xenopus egg extracts, we dissect the roles of its individual subunits in chromosome assembly. We find that one of two HEAT subunits, CAP-D3, plays a crucial role in condensin II-mediated assembly of chromosome axes whereas the other HEAT subunit, CAP-G2, has a very strong negative impact on this process. The SMC ATPase and the basic amino acid clusters of the kleisin subunit CAP-H2 are essential for this process. Deletion of the C-terminal tail of CAP-D3 increases the ability of condensin II to assemble chromosomes and further exposes a hidden function of CAP-G2 in the lateral compaction of chromosomes. Taken together, our results uncover a multilayered regulatory mechanism unique to condensin II, and provide profound implications for the evolution of condensin II.

Data availability

All data generated or analyzed during this experimental study are included in the manuscript as source data.

Article and author information

Author details

  1. Makoto M Yoshida

    Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0618-1717
  2. Kazuhisa Kinoshita

    Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0882-4296
  3. Yuuki Aizawa

    Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5002-7557
  4. Shoji Tane

    Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0209-347X
  5. Daisuke Yamashita

    Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
    Competing interests
    Daisuke Yamashita, is currently affiliated with Otsuka Pharmaceutical Co., Ltd. The author has no financial interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6054-5617
  6. Keishi Shintomi

    Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0484-9901
  7. Tatsuya Hirano

    Chromosome Dynamics Laboratory, RIKEN, Wako, Japan
    For correspondence
    hiranot@riken.jp
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4219-6473

Funding

Japan Society for the Promotion of Science (#20K15723)

  • Makoto M Yoshida

Japan Society for the Promotion of Science (#15K06959)

  • Kazuhisa Kinoshita

Japan Society for the Promotion of Science (#19K06499)

  • Kazuhisa Kinoshita

Japan Society for the Promotion of Science (#18H02381)

  • Keishi Shintomi

Japan Society for the Promotion of Science (#19H05755)

  • Keishi Shintomi

Japan Society for the Promotion of Science (#18H05276)

  • Tatsuya Hirano

Japan Society for the Promotion of Science (#20H0593)

  • Tatsuya Hirano

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Adèle L Marston, University of Edinburgh, United Kingdom

Ethics

Animal experimentation: Female Xenopus laevis frogs (RRID: NXR 0.031, Hamamatsu Seibutsu-Kyozai) were used to lay eggs to harvest Xenopus egg extract (Hirano et al., 1997). Male X. laevis frogs (RRID: NXR 0.031, Hamamatsu Seibutsu-Kyozai) were dissected to prepare sperm nuclei from testes (Shintomi and Hirano, 2017). Frogs were used in compliance with the institutional regulations of the RIKEN Wako Campus. Mice (BALB/c × C57BL/6J)F1) for sperm nuclei (Shintomi et al., 2017) were used in compliance with protocols approved by the Animal Care and Use Committee of the University of Tokyo (for M. Ohsugi who provided mouse sperm).

Version history

  1. Received: March 26, 2022
  2. Preprint posted: April 5, 2022 (view preprint)
  3. Accepted: August 11, 2022
  4. Accepted Manuscript published: August 19, 2022 (version 1)
  5. Version of Record published: August 31, 2022 (version 2)

Copyright

© 2022, Yoshida et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,385
    Page views
  • 373
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Makoto M Yoshida
  2. Kazuhisa Kinoshita
  3. Yuuki Aizawa
  4. Shoji Tane
  5. Daisuke Yamashita
  6. Keishi Shintomi
  7. Tatsuya Hirano
(2022)
Molecular dissection of condensin II-mediated chromosome assembly using in vitro assays
eLife 11:e78984.
https://doi.org/10.7554/eLife.78984

Share this article

https://doi.org/10.7554/eLife.78984

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Maria L Adelus, Jiacheng Ding ... Casey E Romanoski
    Research Article

    Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.

    1. Chromosomes and Gene Expression
    Fujun Zhou, Julie M Bocetti ... Jon R Lorsch
    Research Article

    We have developed a deep sequencing-based approach, Rec-Seq, that allows simultaneous monitoring of ribosomal 48S preinitiation complex (PIC) formation on every mRNA in the translatome in an in vitro reconstituted system. Rec-Seq isolates key early steps in translation initiation in the absence of all other cellular components and processes. Using this approach, we show that the DEAD-box ATPase Ded1 promotes 48S PIC formation on the start codons of >1000 native mRNAs, most of which have long, structured 5′-untranslated regions (5′UTRs). Remarkably, initiation measured in Rec-Seq was enhanced by Ded1 for most mRNAs previously shown to be highly Ded1-dependent by ribosome profiling of ded1 mutants in vivo, demonstrating that the core translation functions of the factor are recapitulated in the purified system. Our data do not support a model in which Ded1acts by reducing initiation at alternative start codons in 5′UTRs and instead indicate it functions by directly promoting mRNA recruitment to the 43S PIC and scanning to locate the main start codon. We also provide evidence that eIF4A, another essential DEAD-box initiation factor, is required for efficient PIC assembly on almost all mRNAs, regardless of their structural complexity, in contrast to the preferential stimulation by Ded1 of initiation on mRNAs with long, structured 5′UTRs.