Compartmentalization and persistence of dominant (regulatory) T cell clones indicates antigen skewing in juvenile idiopathic arthritis

  1. Gerdien Mijnheer
  2. Nila Hendrika Servaas
  3. Jing Yao Leong
  4. Arjan Boltjes
  5. Eric Spierings
  6. Phyllis Chen
  7. Liyun Lai
  8. Alessandra Petrelli
  9. Sebastiaan Vastert
  10. Rob J de Boer
  11. Salvatore Albani
  12. Aridaman Pandit  Is a corresponding author
  13. Femke van Wijk  Is a corresponding author
  1. University Medical Center Utrecht, Netherlands
  2. SingHealth Duke-NUS Academic Medical Centre, Singapore
  3. Utrecht University, Netherlands

Abstract

Autoimmune inflammation is characterized by tissue infiltration and expansion of antigen-specific T cells. Although this inflammation is often limited to specific target tissues, it remains yet to be explored whether distinct affected sites are infiltrated with the same, persistent T cell clones. Here we performed CyTOF analysis and T cell receptor (TCR) sequencing to study immune cell composition and (hyper-)expansion of circulating and joint-derived Tregs and non-Tregs in Juvenile Idiopathic Arthritis (JIA). We studied different joints affected at the same time, as well as over the course of relapsing-remitting disease. We found that the composition and functional characteristics of immune infiltrates are strikingly similar between joints within one patient, and observed a strong overlap between dominant T cell clones, especially Treg, of which some could also be detected in circulation and persisted over the course of relapsing remitting disease. Moreover, these T cell clones were characterized by a high degree of sequence similarity, indicating the presence of TCR clusters responding to the same antigens. These data suggest that in localized autoimmune disease there is auto-antigen driven expansion of both Teffector and Treg clones, that are highly persistent and are (re)circulating. These dominant clones might represent interesting therapeutic targets.

Data availability

TCR-sequencing data presented in this study have been deposited in NCBI's Gene Expression Omnibus (GEO) database under GSE196301. Both raw data and processed data are available.

The following data sets were generated

Article and author information

Author details

  1. Gerdien Mijnheer

    Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Nila Hendrika Servaas

    Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9825-7554
  3. Jing Yao Leong

    Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Arjan Boltjes

    Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Eric Spierings

    Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9441-1019
  6. Phyllis Chen

    Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Liyun Lai

    Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Alessandra Petrelli

    Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Sebastiaan Vastert

    Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Rob J de Boer

    Theoretical Biology, Utrecht University, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2130-691X
  11. Salvatore Albani

    Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  12. Aridaman Pandit

    Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
    For correspondence
    A.Pandit@umcutrecht.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2057-9737
  13. Femke van Wijk

    Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
    For correspondence
    F.vanWijk@umcutrecht.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8343-1356

Funding

ZonMw (91714332)

  • Femke van Wijk

Netherlands Organisation for Scientific Research (016.Veni.178.027)

  • Aridaman Pandit

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent was obtained from all patients either directly or from parents/guardians when the patients were younger than 12 years of age. The study was conducted in accordance with the Institutional Review Board of the University Medical Center Utrecht (approval no. 11-499/C), in compliance with the Declaration of Helsinki.

Copyright

© 2023, Mijnheer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,082
    views
  • 205
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gerdien Mijnheer
  2. Nila Hendrika Servaas
  3. Jing Yao Leong
  4. Arjan Boltjes
  5. Eric Spierings
  6. Phyllis Chen
  7. Liyun Lai
  8. Alessandra Petrelli
  9. Sebastiaan Vastert
  10. Rob J de Boer
  11. Salvatore Albani
  12. Aridaman Pandit
  13. Femke van Wijk
(2023)
Compartmentalization and persistence of dominant (regulatory) T cell clones indicates antigen skewing in juvenile idiopathic arthritis
eLife 12:e79016.
https://doi.org/10.7554/eLife.79016

Share this article

https://doi.org/10.7554/eLife.79016

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.

    1. Immunology and Inflammation
    2. Medicine
    Haiyi Fei, Xiaowen Lu ... Lingling Jiang
    Research Article

    Preeclampsia (PE), a major cause of maternal and perinatal mortality with highly heterogeneous causes and symptoms, is usually complicated by gestational diabetes mellitus (GDM). However, a comprehensive understanding of the immune microenvironment in the placenta of PE and the differences between PE and GDM is still lacking. In this study, cytometry by time of flight indicated that the frequencies of memory-like Th17 cells (CD45RACCR7+IL-17A+CD4+), memory-like CD8+ T cells (CD38+CXCR3CCR7+HeliosCD127CD8+) and pro-inflam Macs (CD206CD163CD38midCD107alowCD86midHLA-DRmidCD14+) were increased, while the frequencies of anti-inflam Macs (CD206+CD163CD86midCD33+HLA-DR+CD14+) and granulocyte myeloid-derived suppressor cells (gMDSCs, CD11b+CD15hiHLA-DRlow) were decreased in the placenta of PE compared with that of normal pregnancy (NP), but not in that of GDM or GDM&PE. The pro-inflam Macs were positively correlated with memory-like Th17 cells and memory-like CD8+ T cells but negatively correlated with gMDSCs. Single-cell RNA sequencing revealed that transferring the F4/80+CD206 pro-inflam Macs with a Folr2+Ccl7+Ccl8+C1qa+C1qb+C1qc+ phenotype from the uterus of PE mice to normal pregnant mice induced the production of memory-like IL-17a+Rora+Il1r1+TNF+Cxcr6+S100a4+CD44+ Th17 cells via IGF1–IGF1R, which contributed to the development and recurrence of PE. Pro-inflam Macs also induced the production of memory-like CD8+ T cells but inhibited the production of Ly6g+S100a8+S100a9+Retnlg+Wfdc21+ gMDSCs at the maternal–fetal interface, leading to PE-like symptoms in mice. In conclusion, this study revealed the PE-specific immune cell network, which was regulated by pro-inflam Macs, providing new ideas about the pathogenesis of PE.