Munc13 supports fusogenicity of non-docked vesicles at synapses with disrupted active zones

  1. Chao Tan
  2. Giovanni de Nola
  3. Claire Qiao
  4. Cordelia Imig
  5. Richard T Born
  6. Nils Brose
  7. Pascal S Kaeser  Is a corresponding author
  1. Harvard Mecical School, United States
  2. Harvard Medical School, United States
  3. University of Copenhagen, Denmark
  4. Max Planck Institute for Multidisciplinary Sciences, Germany

Abstract

Active zones consist of protein scaffolds that are tightly attached to the presynaptic plasma membrane. They dock and prime synaptic vesicles, couple them to voltage-gated Ca2+ channels, and direct neurotransmitter release towards postsynaptic receptor domains. Simultaneous RIM+ELKS ablation disrupts these scaffolds, abolishes vesicle docking and removes active zone-targeted Munc13, but some vesicles remain releasable. To assess whether this enduring vesicular fusogenicity is mediated by non-active zone-anchored Munc13 or is Munc13-independent, we ablated Munc13-1 and Munc13-2 in addition to RIM+ELKS in mouse hippocampal neurons. The hextuple knockout synapses lacked docked vesicles, but other ultrastructural features were near-normal despite the strong genetic manipulation. Removing Munc13 in addition to RIM+ELKS impaired action potential-evoked vesicle fusion more strongly than RIM+ELKS knockout by further decreasing the releasable vesicle pool. Hence, Munc13 can support some fusogenicity without RIM and ELKS, and presynaptic recruitment of Munc13, even without active zone-anchoring, suffices to generate some fusion-competent vesicles.

Data availability

All data generated or analyzed in this study, including individual data points, are included in the figures. Source data files for Fig. 1 - figure supplement 3, Fig. 2 - figure supplement 1 and Fig. 2 - figure supplement 2 are provided, and a source data table that contains all means, errors, statistical tests and p-values is also included.

Article and author information

Author details

  1. Chao Tan

    Department of Neurobiology, Harvard Mecical School, Boston, United States
    Competing interests
    No competing interests declared.
  2. Giovanni de Nola

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  3. Claire Qiao

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2084-2478
  4. Cordelia Imig

    Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7351-8706
  5. Richard T Born

    Department of Neurobiology, Harvard Mecical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4360-427X
  6. Nils Brose

    Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
    Competing interests
    Nils Brose, Reviewing editor, eLife.
  7. Pascal S Kaeser

    Department of Neurobiology, Harvard Medical School, Boston, United States
    For correspondence
    kaeser@hms.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1558-1958

Funding

National Institute of Mental Health (MH113349)

  • Pascal S Kaeser

National Institute of Neurological Disorders and Stroke (NS083898)

  • Pascal S Kaeser

Harvard Medical School (NA)

  • Pascal S Kaeser

Max Planck Institute for Multidisciplinary Sciences (open access funding)

  • Cordelia Imig
  • Nils Brose

German Research Foundation (EXC 2067/1-390729940)

  • Nils Brose

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Axel T Brunger, Stanford University School of Medicine, Howard Hughes Medical Institute, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal experiments were approved by the Harvard University Animal Care and Use Committee (protocol number IS00000049).

Version history

  1. Received: March 29, 2022
  2. Preprint posted: April 1, 2022 (view preprint)
  3. Accepted: November 17, 2022
  4. Accepted Manuscript published: November 18, 2022 (version 1)
  5. Version of Record published: January 6, 2023 (version 2)

Copyright

© 2022, Tan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,736
    views
  • 327
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chao Tan
  2. Giovanni de Nola
  3. Claire Qiao
  4. Cordelia Imig
  5. Richard T Born
  6. Nils Brose
  7. Pascal S Kaeser
(2022)
Munc13 supports fusogenicity of non-docked vesicles at synapses with disrupted active zones
eLife 11:e79077.
https://doi.org/10.7554/eLife.79077

Share this article

https://doi.org/10.7554/eLife.79077

Further reading

    1. Cell Biology
    2. Neuroscience
    Toshiharu Ichinose, Shu Kondo ... Hiromu Tanimoto
    Research Article

    Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5′ leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5’ leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.

    1. Cancer Biology
    2. Cell Biology
    Camille Dantzer, Justine Vaché ... Violaine Moreau
    Research Article

    Immune checkpoint inhibitors have produced encouraging results in cancer patients. However, the majority of ß-catenin-mutated tumors have been described as lacking immune infiltrates and resistant to immunotherapy. The mechanisms by which oncogenic ß-catenin affects immune surveillance remain unclear. Herein, we highlighted the involvement of ß-catenin in the regulation of the exosomal pathway and, by extension, in immune/cancer cell communication in hepatocellular carcinoma (HCC). We showed that mutated ß-catenin represses expression of SDC4 and RAB27A, two main actors in exosome biogenesis, in both liver cancer cell lines and HCC patient samples. Using nanoparticle tracking analysis and live-cell imaging, we further demonstrated that activated ß-catenin represses exosome release. Then, we demonstrated in 3D spheroid models that activation of β-catenin promotes a decrease in immune cell infiltration through a defect in exosome secretion. Taken together, our results provide the first evidence that oncogenic ß-catenin plays a key role in exosome biogenesis. Our study gives new insight into the impact of ß-catenin mutations on tumor microenvironment remodeling, which could lead to the development of new strategies to enhance immunotherapeutic response.