Munc13 supports fusogenicity of non-docked vesicles at synapses with disrupted active zones

  1. Chao Tan
  2. Giovanni de Nola
  3. Claire Qiao
  4. Cordelia Imig
  5. Richard T Born
  6. Nils Brose
  7. Pascal S Kaeser  Is a corresponding author
  1. Harvard Mecical School, United States
  2. Harvard Medical School, United States
  3. University of Copenhagen, Denmark
  4. Max Planck Institute for Multidisciplinary Sciences, Germany

Abstract

Active zones consist of protein scaffolds that are tightly attached to the presynaptic plasma membrane. They dock and prime synaptic vesicles, couple them to voltage-gated Ca2+ channels, and direct neurotransmitter release towards postsynaptic receptor domains. Simultaneous RIM+ELKS ablation disrupts these scaffolds, abolishes vesicle docking and removes active zone-targeted Munc13, but some vesicles remain releasable. To assess whether this enduring vesicular fusogenicity is mediated by non-active zone-anchored Munc13 or is Munc13-independent, we ablated Munc13-1 and Munc13-2 in addition to RIM+ELKS in mouse hippocampal neurons. The hextuple knockout synapses lacked docked vesicles, but other ultrastructural features were near-normal despite the strong genetic manipulation. Removing Munc13 in addition to RIM+ELKS impaired action potential-evoked vesicle fusion more strongly than RIM+ELKS knockout by further decreasing the releasable vesicle pool. Hence, Munc13 can support some fusogenicity without RIM and ELKS, and presynaptic recruitment of Munc13, even without active zone-anchoring, suffices to generate some fusion-competent vesicles.

Data availability

All data generated or analyzed in this study, including individual data points, are included in the figures. Source data files for Fig. 1 - figure supplement 3, Fig. 2 - figure supplement 1 and Fig. 2 - figure supplement 2 are provided, and a source data table that contains all means, errors, statistical tests and p-values is also included.

Article and author information

Author details

  1. Chao Tan

    Department of Neurobiology, Harvard Mecical School, Boston, United States
    Competing interests
    No competing interests declared.
  2. Giovanni de Nola

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  3. Claire Qiao

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2084-2478
  4. Cordelia Imig

    Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7351-8706
  5. Richard T Born

    Department of Neurobiology, Harvard Mecical School, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4360-427X
  6. Nils Brose

    Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
    Competing interests
    Nils Brose, Reviewing editor, eLife.
  7. Pascal S Kaeser

    Department of Neurobiology, Harvard Medical School, Boston, United States
    For correspondence
    kaeser@hms.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1558-1958

Funding

National Institute of Mental Health (MH113349)

  • Pascal S Kaeser

National Institute of Neurological Disorders and Stroke (NS083898)

  • Pascal S Kaeser

Harvard Medical School (NA)

  • Pascal S Kaeser

Max Planck Institute for Multidisciplinary Sciences (open access funding)

  • Cordelia Imig
  • Nils Brose

German Research Foundation (EXC 2067/1-390729940)

  • Nils Brose

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal experiments were approved by the Harvard University Animal Care and Use Committee (protocol number IS00000049).

Copyright

© 2022, Tan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,993
    views
  • 354
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chao Tan
  2. Giovanni de Nola
  3. Claire Qiao
  4. Cordelia Imig
  5. Richard T Born
  6. Nils Brose
  7. Pascal S Kaeser
(2022)
Munc13 supports fusogenicity of non-docked vesicles at synapses with disrupted active zones
eLife 11:e79077.
https://doi.org/10.7554/eLife.79077

Share this article

https://doi.org/10.7554/eLife.79077

Further reading

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.

    1. Cell Biology
    Kaima Tsukada, Rikiya Imamura ... Mikio Shimada
    Research Article

    Polynucleotide kinase phosphatase (PNKP) has enzymatic activities as 3′-phosphatase and 5′-kinase of DNA ends to promote DNA ligation and repair. Here, we show that cyclin-dependent kinases (CDKs) regulate the phosphorylation of threonine 118 (T118) in PNKP. This phosphorylation allows recruitment to the gapped DNA structure found in single-strand DNA (ssDNA) nicks and/or gaps between Okazaki fragments (OFs) during DNA replication. T118A (alanine)-substituted PNKP-expressing cells exhibited an accumulation of ssDNA gaps in S phase and accelerated replication fork progression. Furthermore, PNKP is involved in poly (ADP-ribose) polymerase 1 (PARP1)-dependent replication gap filling as part of a backup pathway in the absence of OFs ligation. Altogether, our data suggest that CDK-mediated PNKP phosphorylation at T118 is important for its recruitment to ssDNA gaps to proceed with OFs ligation and its backup repairs via the gap-filling pathway to maintain genome stability.