Endo-lysosomal assembly variations among Human Leukocyte Antigen class I (HLA-I) allotypes

  1. Eli Olson
  2. Theadora Ceccarelli
  3. Malini Raghavan  Is a corresponding author
  1. University of Michigan-Ann Arbor, United States

Abstract

The extreme polymorphisms of HLA-I proteins enable the presentation of diverse peptides to cytotoxic T lymphocytes (CTL). The canonical endoplasmic reticulum (ER) HLA-I assembly pathway enables presentation of cytosolic peptides, but effective intracellular surveillance requires multi-compartmental antigen sampling. Endo-lysosomes are generally sites of HLA class II assembly, but human monocytes and monocyte-derived dendritic cells (moDCs) also contain significant reserves of endo-lysosomal HLA-I molecules. We hypothesized variable influences of HLA-I polymorphisms upon outcomes of endo-lysosomal trafficking, as the stabilities and peptide occupancies of cell surface HLA-I are variable. Consistent with this model, when the endo-lysosomal pH of moDCs is disrupted, HLA-B allotypes display varying propensities for reductions in surface expression, with HLA-B*08:01 or HLA-B*35:01 being among the most resistant or sensitive respectively, among eight tested HLA-B allotypes. Perturbations of moDC endo-lysosomal pH result in redistribution of HLA-B*35:01, but not HLA-B*08:01, to LAMP1+ compartments and increase HLA-B*35:01 peptide receptivity. These findings reveal the intersection of the vacuolar cross-presentation pathway with a constitutive assembly pathway for some HLA-B allotypes. Notably, cross-presentation of epitopes derived from two soluble antigens was also more efficient for B*35:01 compared to B*08:01, even when matched for T cell response sensitivity, and more affected by cathepsin inhibition. Thus, HLA-I polymorphisms dictate the degree of endo-lysosomal assembly, which can supplement ER assembly for constitutive HLA-I expression and increase the efficiency of cross-presentation.

Data availability

The original data have been deposited to Dryad. Source data for figures have also been provided.

The following data sets were generated
The following previously published data sets were used
    1. Sarkizova et al
    (2020) HLA-I peptidomes
    public proteomics repository MassIVE; MSV000084172/.
    1. Sarkizova et al
    (2020) HLA-I peptidomes
    public proteomics repository MassIVE; MSV000080527.

Article and author information

Author details

  1. Eli Olson

    Department of Microbiology and Immunology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2319-7144
  2. Theadora Ceccarelli

    Department of Microbiology and Immunology, University of Michigan-Ann Arbor, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Malini Raghavan

    Department of Microbiology and Immunology, University of Michigan-Ann Arbor, Ann Arbor, United States
    For correspondence
    malinir@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1345-9318

Funding

National Institute of Allergy and Infectious Diseases (RO1AI044115)

  • Malini Raghavan

National Institute of Allergy and Infectious Diseases (R21AI64025)

  • Malini Raghavan

National Institute of General Medical Sciences (T32GM008353)

  • Eli Olson

National Institute of Allergy and Infectious Diseases (T32AI007413)

  • Eli Olson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent from healthy donors for blood collections and HLA genotyping was procured in accordance with a University of Michigan IRB approved protocol (HUM00071750). The consent document included information that results of the studies could be published in an article without identifying information about blood donors. Donors were genotyped at the HLA locus as previously described (Yarzabek et al., 2018). Alternatively, non-genotyped donor blood was obtained from the University of Michigan Platelet Pharmacology and Physiology core in accordance with a University of Michigan IRB approved protocol (HUM00107120).

Copyright

© 2023, Olson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 935
    views
  • 121
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eli Olson
  2. Theadora Ceccarelli
  3. Malini Raghavan
(2023)
Endo-lysosomal assembly variations among Human Leukocyte Antigen class I (HLA-I) allotypes
eLife 12:e79144.
https://doi.org/10.7554/eLife.79144

Share this article

https://doi.org/10.7554/eLife.79144

Further reading

    1. Immunology and Inflammation
    Aryeh Solomon, Noa Bossel Ben-Moshe ... Roi Avraham
    Research Article

    Trained immunity (TI) is the process wherein innate immune cells gain functional memory upon exposure to specific ligands or pathogens, leading to augmented inflammatory responses and pathogen clearance upon secondary exposure. While the differentiation of hematopoietic stem cells (HSCs) and reprogramming of bone marrow (BM) progenitors are well-established mechanisms underpinning durable TI protection, remodeling of the cellular architecture within the tissue during TI remains underexplored. Here, we study the effects of peritoneal Bacillus Calmette–Guérin (BCG) administration to find TI-mediated protection in the spleen against a subsequent heterologous infection by the Gram-negative pathogen Salmonella Typhimurium (S.Tm). Utilizing single cell RNA-sequencing and flow cytometry, we discerned STAT1-regulated genes in TI-associated resident and recruited splenic myeloid populations. The temporal dynamics of TI were further elucidated, revealing both early and delayed myeloid subsets with time-dependent, cell-type-specific STAT1 signatures. Using lineage tracing, we find that tissue-resident red pulp macrophages (RPM), initially depleted by BCG exposure, are restored from both tissue-trained, self-renewing macrophages and from bone marrow-derived progenitors, fostering long lasting local defense. Early inhibition of STAT1 activation, using specific JAK-STAT inhibitors, reduces both RPM loss and recruitment of trained monocytes. Our study suggests a temporal window soon after BCG vaccination, in which STAT1-dependent activation of long-lived resident cells in the tissue mediates localized protection.

    1. Immunology and Inflammation
    Yalan Jiang, Pingping He ... Xiaoou Shan
    Research Article

    Type 1 diabetes mellitus (T1DM), known as insulin-dependent diabetes mellitus, is characterized by persistent hyperglycemia resulting from damage to the pancreatic β cells and an absolute deficiency of insulin, leading to multi-organ involvement and a poor prognosis. The progression of T1DM is significantly influenced by oxidative stress and apoptosis. The natural compound eugenol (EUG) possesses anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, the potential effects of EUG on T1DM had not been investigated. In this study, we established the streptozotocin (STZ)-induced T1DM mouse model in vivo and STZ-induced pancreatic β cell MIN6 cell model in vitro to investigate the protective effects of EUG on T1DM, and tried to elucidate its potential mechanism. Our findings demonstrated that the intervention of EUG could effectively induce the activation of nuclear factor E2-related factor 2 (NRF2), leading to an up-regulation in the expressions of downstream proteins NQO1 and HMOX1, which are regulated by NRF2. Moreover, this intervention exhibited a significant amelioration in pancreatic β cell damage associated with T1DM, accompanied by an elevation in insulin secretion and a reduction in the expression levels of apoptosis and oxidative stress-related markers. Furthermore, ML385, an NRF2 inhibitor, reversed these effects of EUG. The present study suggested that EUG exerted protective effects on pancreatic β cells in T1DM by attenuating apoptosis and oxidative stress through the activation of the NRF2 signaling pathway. Consequently, EUG holds great promise as a potential therapeutic candidate for T1DM.