Impaired iron recycling from erythrocytes is an early hallmark of aging

  1. Patryk Slusarczyk
  2. Pratik Kumar Mandal
  3. Gabriela Zurawska
  4. Marta Niklewicz
  5. Komal Chouhan
  6. Raghunandan Mahadeva
  7. Aneta Jończy
  8. Matylda Macias
  9. Aleksandra Szybinska
  10. Magdalena Cybulska-Lubak
  11. Olga Krawczyk
  12. Sylwia Herman
  13. Michal Mikula
  14. Remigiusz Serwa
  15. Malgorzata Lenartowicz
  16. Wojciech Pokrzywa
  17. Katarzyna Mleczko-Sanecka  Is a corresponding author
  1. International Institute of Molecular and Cell Biology, Poland
  2. Maria Sklodowska-Curie National Research Institute of Oncolog, Poland
  3. Jagiellonian University, Poland
  4. Polish Academy of Sciences, Poland

Abstract

Aging affects iron homeostasis, as evidenced by tissue iron loading and anemia in the elderly. Iron needs in mammals are met primarily by iron recycling from senescent red blood cells (RBCs), a task chiefly accomplished by splenic red pulp macrophages (RPMs) via erythrophagocytosis. Given that RPMs continuously process iron, their cellular functions might be susceptible to age-dependent decline, a possibility that has been unexplored to date. Here, we found that 10-11-month-old female mice exhibit iron loading in RPMs, largely attributable to a drop in iron exporter ferroportin, which diminishes their erythrophagocytosis capacity and lysosomal activity. Furthermore, we identified a loss of RPMs during aging, underlain by the combination of proteotoxic stress and iron-dependent cell death resembling ferroptosis. These impairments lead to the retention of senescent hemolytic RBCs in the spleen, and the formation of undegradable iron- and heme-rich extracellular protein aggregates, likely derived from ferroptotic RPMs. We further found that feeding mice an iron-reduced diet alleviates iron accumulation in RPMs, enhances their ability to clear erythrocytes, and reduces damage. Consequently, this diet ameliorates hemolysis of splenic RBCs and reduces the burden of protein aggregates, mildly increasing serum iron availability in aging mice. Taken together, we identified RPM collapse as an early hallmark of aging and demonstrated that dietary iron reduction improves iron turnover efficacy.

Data availability

RNA sequencing data are deposited in the GEO repository (under accession no: GSE199879).Mass spectrometry proteomics data were deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifiers: PXD032900 and PXD038660.All other numerical data used to generate the figures are provided as Source data files.

The following data sets were generated

Article and author information

Author details

  1. Patryk Slusarczyk

    International Institute of Molecular and Cell Biology, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  2. Pratik Kumar Mandal

    International Institute of Molecular and Cell Biology, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  3. Gabriela Zurawska

    International Institute of Molecular and Cell Biology, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  4. Marta Niklewicz

    International Institute of Molecular and Cell Biology, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  5. Komal Chouhan

    International Institute of Molecular and Cell Biology, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  6. Raghunandan Mahadeva

    International Institute of Molecular and Cell Biology, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  7. Aneta Jończy

    International Institute of Molecular and Cell Biology, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  8. Matylda Macias

    International Institute of Molecular and Cell Biology, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  9. Aleksandra Szybinska

    International Institute of Molecular and Cell Biology, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  10. Magdalena Cybulska-Lubak

    Maria Sklodowska-Curie National Research Institute of Oncolog, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  11. Olga Krawczyk

    Maria Sklodowska-Curie National Research Institute of Oncolog, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  12. Sylwia Herman

    Department of Genetics and Evolution, Jagiellonian University, Cracow, Poland
    Competing interests
    The authors declare that no competing interests exist.
  13. Michal Mikula

    Maria Sklodowska-Curie National Research Institute of Oncolog, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  14. Remigiusz Serwa

    International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  15. Malgorzata Lenartowicz

    Department of Genetics and Evolution, Jagiellonian University, Cracow, Poland
    Competing interests
    The authors declare that no competing interests exist.
  16. Wojciech Pokrzywa

    International Institute of Molecular and Cell Biology, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5110-4462
  17. Katarzyna Mleczko-Sanecka

    International Institute of Molecular and Cell Biology, Warsaw, Poland
    For correspondence
    kmsanecka@iimcb.gov.pl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9095-9597

Funding

National Science Centre (Sonata Bis grant (UMO-2020/38/E/NZ4/00511).)

  • Patryk Slusarczyk
  • Pratik Kumar Mandal
  • Gabriela Zurawska
  • Marta Niklewicz
  • Komal Chouhan
  • Raghunandan Mahadeva
  • Aneta Jończy
  • Katarzyna Mleczko-Sanecka

Norwegian Financial Mechanisms 2014-2021/Polish National Science Centre (UMO-2019/34/H/NZ3/00691)

  • Patryk Slusarczyk
  • Pratik Kumar Mandal
  • Wojciech Pokrzywa

Foundation for Polish Science (International Research Agendas program MAB/2017/2)

  • Remigiusz Serwa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by the local ethical communities for animal care and use in Olsztyn and Warsaw (II LKE) (decisions: WAW2/015/2019; WAW2/149/2019; WAW2/026/2020; WAW2/149/2020).The procedure was approved by the local ethical committee in Warsaw (decision: WAW2/122/2019).

Copyright

© 2023, Slusarczyk et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,313
    views
  • 445
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Patryk Slusarczyk
  2. Pratik Kumar Mandal
  3. Gabriela Zurawska
  4. Marta Niklewicz
  5. Komal Chouhan
  6. Raghunandan Mahadeva
  7. Aneta Jończy
  8. Matylda Macias
  9. Aleksandra Szybinska
  10. Magdalena Cybulska-Lubak
  11. Olga Krawczyk
  12. Sylwia Herman
  13. Michal Mikula
  14. Remigiusz Serwa
  15. Malgorzata Lenartowicz
  16. Wojciech Pokrzywa
  17. Katarzyna Mleczko-Sanecka
(2023)
Impaired iron recycling from erythrocytes is an early hallmark of aging
eLife 12:e79196.
https://doi.org/10.7554/eLife.79196

Share this article

https://doi.org/10.7554/eLife.79196

Further reading

    1. Cell Biology
    Tomoharu Kanie, Beibei Liu ... Peter K Jackson
    Research Article

    Distal appendages are nine-fold symmetric blade-like structures attached to the distal end of the mother centriole. These structures are critical for formation of the primary cilium, by regulating at least four critical steps: ciliary vesicle recruitment, recruitment and initiation of intraflagellar transport (IFT), and removal of CP110. While specific proteins that localize to the distal appendages have been identified, how exactly each protein functions to achieve the multiple roles of the distal appendages is poorly understood. Here we comprehensively analyze known and newly discovered distal appendage proteins (CEP83, SCLT1, CEP164, TTBK2, FBF1, CEP89, KIZ, ANKRD26, PIDD1, LRRC45, NCS1, CEP15) for their precise localization, order of recruitment, and their roles in each step of cilia formation. Using CRISPR-Cas9 knockouts, we show that the order of the recruitment of the distal appendage proteins is highly interconnected and a more complex hierarchy. Our analysis highlights two protein modules, CEP83-SCLT1 and CEP164-TTBK2, as critical for structural assembly of distal appendages. Functional assays revealed that CEP89 selectively functions in RAB34+ ciliary vesicle recruitment, while deletion of the integral components, CEP83-SCLT1-CEP164-TTBK2, severely compromised all four steps of cilium formation. Collectively, our analyses provide a more comprehensive view of the organization and the function of the distal appendage, paving the way for molecular understanding of ciliary assembly.

    1. Cell Biology
    Tomoharu Kanie, Roy Ng ... Peter K Jackson
    Research Article

    The primary cilium is a microtubule-based organelle that cycles through assembly and disassembly. In many cell types, formation of the cilium is initiated by recruitment of ciliary vesicles to the distal appendage of the mother centriole. However, the distal appendage mechanism that directly captures ciliary vesicles is yet to be identified. In an accompanying paper, we show that the distal appendage protein, CEP89, is important for the ciliary vesicle recruitment, but not for other steps of cilium formation (Tomoharu Kanie, Love, Fisher, Gustavsson, & Jackson, 2023). The lack of a membrane binding motif in CEP89 suggests that it may indirectly recruit ciliary vesicles via another binding partner. Here, we identify Neuronal Calcium Sensor-1 (NCS1) as a stoichiometric interactor of CEP89. NCS1 localizes to the position between CEP89 and a ciliary vesicle marker, RAB34, at the distal appendage. This localization was completely abolished in CEP89 knockouts, suggesting that CEP89 recruits NCS1 to the distal appendage. Similarly to CEP89 knockouts, ciliary vesicle recruitment as well as subsequent cilium formation was perturbed in NCS1 knockout cells. The ability of NCS1 to recruit the ciliary vesicle is dependent on its myristoylation motif and NCS1 knockout cells expressing a myristoylation defective mutant failed to rescue the vesicle recruitment defect despite localizing properly to the centriole. In sum, our analysis reveals the first known mechanism for how the distal appendage recruits the ciliary vesicles.