Memory persistence and differentiation into antibody-secreting cells accompanied by positive selection in longitudinal BCR repertoires

  1. Artem I Mikelov
  2. Evgeniia I Alekseeva
  3. Ekaterina A Komech
  4. Dmitry B Staroverov
  5. Maria A Turchaninova
  6. Mikhail Shugay
  7. Dmitriy M Chudakov
  8. Georgii A Bazykin
  9. Ivan V Zvyagin  Is a corresponding author
  1. Skolkovo Institute of Science and Technology, Russian Federation
  2. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Federation
  3. Pirogov Russian National Research Medical University, Russian Federation

Abstract

The stability and plasticity of B cell-mediated immune memory ensures the ability to respond to the repeated challenges. We have analyzed the longitudinal dynamics of immunoglobulin heavy chain repertoires from memory B cells, plasmablasts, and plasma cells from the peripheral blood of generally healthy volunteers. We reveal a high degree of clonal persistence in individual memory B cell subsets, with inter-individual convergence in memory and antibody-secreting cells (ASCs). ASC clonotypes demonstrate clonal relatedness to memory B cells, and are transient in peripheral blood. We identify two clusters of expanded clonal lineages with differing prevalence of memory B cells, isotypes, and persistence. Phylogenetic analysis revealed signs of reactivation of persisting memory B cell-enriched clonal lineages, accompanied by new rounds of affinity maturation during proliferation and differentiation into ASCs. Negative selection contributes to both persisting and reactivated lineages, preserving the functionality and specificity of BCRs to protect against current and future pathogens.

Data availability

Sequencing data have been deposited in the ArrayExpress database (www.ebi.ac.uk/arrayexpress, acc. num. E-MTAB-11193). The code for repertoire analysis is available at https://github.com/amikelov/igh_subsets; the code for clonal lineage analysis is available at https://github.com/EvgeniiaAlekseeva/Clonal_group_analysis

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Artem I Mikelov

    Skolkovo Institute of Science and Technology, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1629-2373
  2. Evgeniia I Alekseeva

    Skolkovo Institute of Science and Technology, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  3. Ekaterina A Komech

    Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  4. Dmitry B Staroverov

    Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  5. Maria A Turchaninova

    Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  6. Mikhail Shugay

    Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7826-7942
  7. Dmitriy M Chudakov

    Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0430-790X
  8. Georgii A Bazykin

    Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2334-2751
  9. Ivan V Zvyagin

    Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    For correspondence
    izvyagin@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1769-9116

Funding

Ministry of Science and Higher Education of the Russian Federation (075-15-2020-807)

  • Dmitriy M Chudakov

Russian Foundation for Basic Research (20-34-90153)

  • Evgeniia I Alekseeva

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent was obtained from each donor. The study was approved by the Local Ethical Committee of Pirogov Russian National Research Medical University, Moscow, Russia (abstract #190 18 Nov 2019).

Copyright

© 2022, Mikelov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,430
    views
  • 283
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Artem I Mikelov
  2. Evgeniia I Alekseeva
  3. Ekaterina A Komech
  4. Dmitry B Staroverov
  5. Maria A Turchaninova
  6. Mikhail Shugay
  7. Dmitriy M Chudakov
  8. Georgii A Bazykin
  9. Ivan V Zvyagin
(2022)
Memory persistence and differentiation into antibody-secreting cells accompanied by positive selection in longitudinal BCR repertoires
eLife 11:e79254.
https://doi.org/10.7554/eLife.79254

Share this article

https://doi.org/10.7554/eLife.79254

Further reading

    1. Immunology and Inflammation
    Aryeh Solomon, Noa Bossel Ben-Moshe ... Roi Avraham
    Research Article

    Trained immunity (TI) is the process wherein innate immune cells gain functional memory upon exposure to specific ligands or pathogens, leading to augmented inflammatory responses and pathogen clearance upon secondary exposure. While the differentiation of hematopoietic stem cells (HSCs) and reprogramming of bone marrow (BM) progenitors are well-established mechanisms underpinning durable TI protection, remodeling of the cellular architecture within the tissue during TI remains underexplored. Here, we study the effects of peritoneal Bacillus Calmette–Guérin (BCG) administration to find TI-mediated protection in the spleen against a subsequent heterologous infection by the Gram-negative pathogen Salmonella Typhimurium (S.Tm). Utilizing single cell RNA-sequencing and flow cytometry, we discerned STAT1-regulated genes in TI-associated resident and recruited splenic myeloid populations. The temporal dynamics of TI were further elucidated, revealing both early and delayed myeloid subsets with time-dependent, cell-type-specific STAT1 signatures. Using lineage tracing, we find that tissue-resident red pulp macrophages (RPM), initially depleted by BCG exposure, are restored from both tissue-trained, self-renewing macrophages and from bone marrow-derived progenitors, fostering long lasting local defense. Early inhibition of STAT1 activation, using specific JAK-STAT inhibitors, reduces both RPM loss and recruitment of trained monocytes. Our study suggests a temporal window soon after BCG vaccination, in which STAT1-dependent activation of long-lived resident cells in the tissue mediates localized protection.

    1. Immunology and Inflammation
    Yalan Jiang, Pingping He ... Xiaoou Shan
    Research Article

    Type 1 diabetes mellitus (T1DM), known as insulin-dependent diabetes mellitus, is characterized by persistent hyperglycemia resulting from damage to the pancreatic β cells and an absolute deficiency of insulin, leading to multi-organ involvement and a poor prognosis. The progression of T1DM is significantly influenced by oxidative stress and apoptosis. The natural compound eugenol (EUG) possesses anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, the potential effects of EUG on T1DM had not been investigated. In this study, we established the streptozotocin (STZ)-induced T1DM mouse model in vivo and STZ-induced pancreatic β cell MIN6 cell model in vitro to investigate the protective effects of EUG on T1DM, and tried to elucidate its potential mechanism. Our findings demonstrated that the intervention of EUG could effectively induce the activation of nuclear factor E2-related factor 2 (NRF2), leading to an up-regulation in the expressions of downstream proteins NQO1 and HMOX1, which are regulated by NRF2. Moreover, this intervention exhibited a significant amelioration in pancreatic β cell damage associated with T1DM, accompanied by an elevation in insulin secretion and a reduction in the expression levels of apoptosis and oxidative stress-related markers. Furthermore, ML385, an NRF2 inhibitor, reversed these effects of EUG. The present study suggested that EUG exerted protective effects on pancreatic β cells in T1DM by attenuating apoptosis and oxidative stress through the activation of the NRF2 signaling pathway. Consequently, EUG holds great promise as a potential therapeutic candidate for T1DM.