Mechanosensitive pore opening of a prokaryotic voltage-gated sodium channel

  1. Peter R Strege
  2. Luke M Cowan
  3. Constanza Alcaino
  4. Amelia Mazzone
  5. Christopher A Ahern
  6. Lorin S Milescu  Is a corresponding author
  7. Gianrico Farrugia  Is a corresponding author
  8. Arthur Beyder  Is a corresponding author
  1. Mayo Clinic, United States
  2. University of Iowa, United States
  3. University of Maryland, College Park, United States

Abstract

Voltage-gated ion channels orchestrate electrical activities that drive mechanical functions in contractile tissues such as the heart and gut. In turn, contractions change membrane tension and impact ion channels. Voltage-gated ion channels are mechanosensitive, but the mechanisms of mechanosensitivity remain poorly understood. Here, we leverage the relative simplicity of NaChBac, a prokaryotic voltage-gated sodium channel from Bacillus halodurans, to investigate mechanosensitivity. In whole-cell experiments on heterologously transfected HEK293 cells, shear stress reversibly altered the kinetic properties of NaChBac and increased its maximum current, comparably to the mechanosensitive eukaryotic sodium channel NaV1.5. In single-channel experiments, patch suction reversibly increased the open probability of a NaChBac mutant with inactivation removed. A simple kinetic mechanism featuring a mechanosensitive pore opening transition explained the overall response to force, whereas an alternative model with mechanosensitive voltage sensor activation diverged from the data. Structural analysis of NaChBac identified a large displacement of the hinged intracellular gate, and mutagenesis near the hinge diminished NaChBac mechanosensitivity, further supporting the proposed mechanism. Our results suggest that NaChBac is overall mechanosensitive due to the mechanosensitivity of a voltage-insensitive gating step associated with the pore opening. This mechanism may apply to eukaryotic voltage-gated ion channels, including NaV1.5.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1 - 5 and Supplements to Figures 1 - 3, and 5.

Article and author information

Author details

  1. Peter R Strege

    Department of Medicine, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Luke M Cowan

    Department of Medicine, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5512-1227
  3. Constanza Alcaino

    Department of Medicine, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Amelia Mazzone

    Department of Medicine, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christopher A Ahern

    Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7975-2744
  6. Lorin S Milescu

    Department of Biology, University of Maryland, College Park, College Park, United States
    For correspondence
    lorinsmilescu@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  7. Gianrico Farrugia

    Department of Medicine, Mayo Clinic, Rochester, United States
    For correspondence
    farrugia.gianrico@mayo.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3473-5235
  8. Arthur Beyder

    Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, United States
    For correspondence
    Beyder.Arthur@mayo.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

NIDDK (DK052766)

  • Gianrico Farrugia
  • Arthur Beyder

NIDDK (DK123549)

  • Arthur Beyder

NIH (AT010875)

  • Arthur Beyder

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2023, Strege et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,324
    views
  • 235
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter R Strege
  2. Luke M Cowan
  3. Constanza Alcaino
  4. Amelia Mazzone
  5. Christopher A Ahern
  6. Lorin S Milescu
  7. Gianrico Farrugia
  8. Arthur Beyder
(2023)
Mechanosensitive pore opening of a prokaryotic voltage-gated sodium channel
eLife 12:e79271.
https://doi.org/10.7554/eLife.79271

Share this article

https://doi.org/10.7554/eLife.79271

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Richard A Kahn, Harvinder Virk ... Skye Longworth
    Feature Article

    Antibodies are used in many areas of biomedical and clinical research, but many of these antibodies have not been adequately characterized, which casts doubt on the results reported in many scientific papers. This problem is compounded by a lack of suitable control experiments in many studies. In this article we review the history of the ‘antibody characterization crisis’, and we document efforts and initiatives to address the problem, notably for antibodies that target human proteins. We also present recommendations for a range of stakeholders – researchers, universities, journals, antibody vendors and repositories, scientific societies and funders – to increase the reproducibility of studies that rely on antibodies.

    1. Cancer Biology
    2. Cell Biology
    Francesca Butera, Julia E Sero ... Chris Bakal
    Research Article

    The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in PDAC tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.