Mechanosensitive pore opening of a prokaryotic voltage-gated sodium channel

  1. Peter R Strege
  2. Luke M Cowan
  3. Constanza Alcaino
  4. Amelia Mazzone
  5. Christopher A Ahern
  6. Lorin S Milescu  Is a corresponding author
  7. Gianrico Farrugia  Is a corresponding author
  8. Arthur Beyder  Is a corresponding author
  1. Mayo Clinic, United States
  2. University of Iowa, United States
  3. University of Maryland, College Park, United States

Abstract

Voltage-gated ion channels orchestrate electrical activities that drive mechanical functions in contractile tissues such as the heart and gut. In turn, contractions change membrane tension and impact ion channels. Voltage-gated ion channels are mechanosensitive, but the mechanisms of mechanosensitivity remain poorly understood. Here, we leverage the relative simplicity of NaChBac, a prokaryotic voltage-gated sodium channel from Bacillus halodurans, to investigate mechanosensitivity. In whole-cell experiments on heterologously transfected HEK293 cells, shear stress reversibly altered the kinetic properties of NaChBac and increased its maximum current, comparably to the mechanosensitive eukaryotic sodium channel NaV1.5. In single-channel experiments, patch suction reversibly increased the open probability of a NaChBac mutant with inactivation removed. A simple kinetic mechanism featuring a mechanosensitive pore opening transition explained the overall response to force, whereas an alternative model with mechanosensitive voltage sensor activation diverged from the data. Structural analysis of NaChBac identified a large displacement of the hinged intracellular gate, and mutagenesis near the hinge diminished NaChBac mechanosensitivity, further supporting the proposed mechanism. Our results suggest that NaChBac is overall mechanosensitive due to the mechanosensitivity of a voltage-insensitive gating step associated with the pore opening. This mechanism may apply to eukaryotic voltage-gated ion channels, including NaV1.5.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for Figures 1 - 5 and Supplements to Figures 1 - 3, and 5.

Article and author information

Author details

  1. Peter R Strege

    Department of Medicine, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Luke M Cowan

    Department of Medicine, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5512-1227
  3. Constanza Alcaino

    Department of Medicine, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Amelia Mazzone

    Department of Medicine, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christopher A Ahern

    Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7975-2744
  6. Lorin S Milescu

    Department of Biology, University of Maryland, College Park, College Park, United States
    For correspondence
    lorinsmilescu@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  7. Gianrico Farrugia

    Department of Medicine, Mayo Clinic, Rochester, United States
    For correspondence
    farrugia.gianrico@mayo.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3473-5235
  8. Arthur Beyder

    Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, United States
    For correspondence
    Beyder.Arthur@mayo.edu
    Competing interests
    The authors declare that no competing interests exist.

Funding

NIDDK (DK052766)

  • Gianrico Farrugia
  • Arthur Beyder

NIDDK (DK123549)

  • Arthur Beyder

NIH (AT010875)

  • Arthur Beyder

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jon T Sack, University of California, Davis, United States

Version history

  1. Received: April 5, 2022
  2. Preprint posted: May 10, 2022 (view preprint)
  3. Accepted: March 10, 2023
  4. Accepted Manuscript published: March 13, 2023 (version 1)
  5. Version of Record published: March 24, 2023 (version 2)

Copyright

© 2023, Strege et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,253
    views
  • 220
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peter R Strege
  2. Luke M Cowan
  3. Constanza Alcaino
  4. Amelia Mazzone
  5. Christopher A Ahern
  6. Lorin S Milescu
  7. Gianrico Farrugia
  8. Arthur Beyder
(2023)
Mechanosensitive pore opening of a prokaryotic voltage-gated sodium channel
eLife 12:e79271.
https://doi.org/10.7554/eLife.79271

Share this article

https://doi.org/10.7554/eLife.79271

Further reading

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.

    1. Cell Biology
    Simona Bolamperti, Hiroaki Saito ... Hanna Taipaleenmäki
    Research Article

    Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1–34 (PTH 1–34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.