Integrative analysis of metabolite GWAS illuminates the molecular basis of pleiotropy and genetic correlation

  1. Courtney J Smith  Is a corresponding author
  2. Nasa Sinnott-Armstrong  Is a corresponding author
  3. Anna Cichońska
  4. Heli Julkunen
  5. Eric B Fauman
  6. Peter Würtz
  7. Jonathan K Pritchard  Is a corresponding author
  1. Stanford University, United States
  2. Fred Hutchinson Cancer Research Center, United States
  3. Nightingale Health Plc, Finland
  4. Pfizer, United States

Abstract

Pleiotropy and genetic correlation are widespread features in GWAS, but they are often difficult to interpret at the molecular level. Here, we perform GWAS of 16 metabolites clustered at the intersection of amino acid catabolism, glycolysis, and ketone body metabolism in a subset of UK Biobank. We utilize the well-documented biochemistry jointly impacting these metabolites to analyze pleiotropic effects in the context of their pathways. Among the 213 lead GWAS hits, we find a strong enrichment for genes encoding pathway-relevant enzymes and transporters. We demonstrate that the effect directions of variants acting on biology between metabolite pairs often contrast with those of upstream or downstream variants as well as the polygenic background. Thus, we find that these outlier variants often reflect biology local to the traits. Finally, we explore the implications for interpreting disease GWAS, underscoring the potential of unifying biochemistry with dense metabolomics data to understand the molecular basis of pleiotropy in complex traits and diseases.

Data availability

The source data and analyzed data have been deposited in Dryad. Code are available at the github link (https://github.com/courtrun/Pleiotropy-of-UKB-Metabolites). The raw individual level data are available through application to UK Biobank.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Courtney J Smith

    Department of Genetics, Stanford University, Stanford, United States
    For correspondence
    courtrun@stanford.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7812-0083
  2. Nasa Sinnott-Armstrong

    Herbold Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    nasa@fredhutch.org
    Competing interests
    No competing interests declared.
  3. Anna Cichońska

    Nightingale Health Plc, Helsinki, Finland
    Competing interests
    Anna Cichońska, is a former employee and holds stock options with Nightingale Health Plc..
  4. Heli Julkunen

    Nightingale Health Plc, Helsinki, Finland
    Competing interests
    Heli Julkunen, is an employee and holds stock options with Nightingale Health Plc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4282-0248
  5. Eric B Fauman

    Internal Medicine Research Unit, Pfizer, Cambridge, United States
    Competing interests
    Eric B Fauman, is affiliated with Pfizer Worldwide Research, has no financial interests to declare, contributed as an individual and the work was not part of a Pfizer collaboration nor was it funded by Pfizer..
  6. Peter Würtz

    Nightingale Health Plc, Helsinki, Finland
    Competing interests
    Peter Würtz, is an employee and shareholder of Nightingale Health Plc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5832-0221
  7. Jonathan K Pritchard

    Departments of Genetics and Biology, Stanford University, Stanford, United States
    For correspondence
    pritch@stanford.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8828-5236

Funding

Stanford Knight-Hennessy Scholars Program (Graduate Student Fellowship)

  • Courtney J Smith

National Science Foundation (Graduate Student Fellowship)

  • Courtney J Smith

National Institute of Health (5R01HG011432 and 5R01AG066490)

  • Jonathan K Pritchard

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alexander Young, University of California, Los Angeles, United States

Ethics

Human subjects: All participants provided written informed consent and ethical approval was obtained from the North West Multi-Center Research Ethics Committee (11/NW/0382). The current analysis was approved under UK Biobank Project 24983 and 30418.

Version history

  1. Preprint posted: April 4, 2022 (view preprint)
  2. Received: April 7, 2022
  3. Accepted: September 6, 2022
  4. Accepted Manuscript published: September 8, 2022 (version 1)
  5. Version of Record published: October 6, 2022 (version 2)

Copyright

© 2022, Smith et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,531
    Page views
  • 675
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Courtney J Smith
  2. Nasa Sinnott-Armstrong
  3. Anna Cichońska
  4. Heli Julkunen
  5. Eric B Fauman
  6. Peter Würtz
  7. Jonathan K Pritchard
(2022)
Integrative analysis of metabolite GWAS illuminates the molecular basis of pleiotropy and genetic correlation
eLife 11:e79348.
https://doi.org/10.7554/eLife.79348

Share this article

https://doi.org/10.7554/eLife.79348

Further reading

    1. Genetics and Genomics
    Songyuan Wu, Xiaoling Tong ... Fangyin Dai
    Research Article

    The color pattern of insects is one of the most diverse adaptive evolutionary phenotypes. However, the molecular regulation of this color pattern is not fully understood. In this study, we found that the transcription factor Bm-mamo is responsible for black dilute (bd) allele mutations in the silkworm. Bm-mamo belongs to the BTB zinc finger family and is orthologous to mamo in Drosophila melanogaster. This gene has a conserved function in gamete production in Drosophila and silkworms and has evolved a pleiotropic function in the regulation of color patterns in caterpillars. Using RNAi and clustered regularly interspaced short palindromic repeats (CRISPR) technology, we showed that Bm-mamo is a repressor of dark melanin patterns in the larval epidermis. Using in vitro binding assays and gene expression profiling in wild-type and mutant larvae, we also showed that Bm-mamo likely regulates the expression of related pigment synthesis and cuticular protein genes in a coordinated manner to mediate its role in color pattern formation. This mechanism is consistent with the dual role of this transcription factor in regulating both the structure and shape of the cuticle and the pigments that are embedded within it. This study provides new insight into the regulation of color patterns as well as into the construction of more complex epidermal features in some insects.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Maria L Adelus, Jiacheng Ding ... Casey E Romanoski
    Research Article

    Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.