Machine learning-assisted fluoroscopy of bladder function in awake mice

  1. Helene De Bruyn
  2. Nikky Corthout
  3. Sebastian Munck
  4. Wouter Everaerts
  5. Thomas Voets  Is a corresponding author
  1. VIB-KU Leuven Center for Brain & Disease Research, Belgium
  2. KU Leuven, Belgium

Abstract

Understanding the lower urinary tract (LUT) and development of highly needed novel therapies to treat LUT disorders depends on accurate techniques to monitor LUT (dys)function in preclinical models. We recently developed videocystometry in rodents, which combines intravesical pressure measurements with X-ray-based fluoroscopy of the LUT, allowing the in vivo analysis of the process of urine storage and voiding with unprecedented detail. Videocystometry relies on the precise contrast-based determination of the bladder volume at high temporal resolution, which can readily be achieved in anesthetized or otherwise motion-restricted mice but not in awake and freely moving animals. To overcome this limitation, we developed a machine-learning method, in which we trained a neural network to automatically detect the bladder in fluoroscopic images, allowing the automatic analysis of bladder filling and voiding cycles based on large sets of time-lapse fluoroscopic images (>3 hours at 30 images/second) from behaving mice and in a non-invasive manner. With this approach, we found that urethane, an injectable anesthetic that is commonly used in preclinical urological research, has a profound, dose-dependent effect on urethral relaxation and voiding duration. Moreover, both in awake and in anaesthetized mice, the bladder capacity was decreased ~4-fold when cystometry was performed acutely after surgical implantation of a suprapubic catheter. Our findings provide a paradigm for the non-invasive, in vivo monitoring of a hollow organ in behaving animals and pinpoint important limitations of the current gold standard techniques to study the LUT in mice.

Data availability

Raw data for Figures 1-4 are available via https://doi.org/10.6084/m9.figshare.19826050.v1.

The following data sets were generated

Article and author information

Author details

  1. Helene De Bruyn

    Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  2. Nikky Corthout

    VIB BioImaging Core, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Sebastian Munck

    VIB BioImaging Core, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Wouter Everaerts

    Department of Development and Regeneration, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3157-7115
  5. Thomas Voets

    Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
    For correspondence
    thomas.voets@kuleuven.vib.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5526-5821

Funding

Fonds Wetenschappelijk Onderzoek (I001322N)

  • Sebastian Munck

Fonds Wetenschappelijk Onderzoek (G0B7620N)

  • Thomas Voets

Fonds Wetenschappelijk Onderzoek (I000321N)

  • Sebastian Munck

KU Leuven (KA/20/085)

  • Sebastian Munck

KU Leuven (IDN/19/039)

  • Sebastian Munck

Fonds Wetenschappelijk Onderzoek (Senior Clinical Investigator fellowship)

  • Wouter Everaerts

Fonds Wetenschappelijk Onderzoek (G066322N)

  • Wouter Everaerts

KU Leuven (C24M/21/028)

  • Wouter Everaerts

Queen Elisabeth Medical Foundation

  • Thomas Voets

Vlaams Instituut voor Biotechnologie (Unrestricted grant)

  • Thomas Voets

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anne M.J. Verstegen, BIDMC, Harvard Medical School, United States

Ethics

Animal experimentation: All animal experiments were carried out after approval of the Ethical Committee Laboratory Animals of the Faculty of Biomedical Sciences of the KU Leuven under project number P035/2018.

Version history

  1. Received: April 9, 2022
  2. Preprint posted: April 13, 2022 (view preprint)
  3. Accepted: September 5, 2022
  4. Accepted Manuscript published: September 6, 2022 (version 1)
  5. Version of Record published: October 11, 2022 (version 2)

Copyright

© 2022, De Bruyn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 638
    Page views
  • 209
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Helene De Bruyn
  2. Nikky Corthout
  3. Sebastian Munck
  4. Wouter Everaerts
  5. Thomas Voets
(2022)
Machine learning-assisted fluoroscopy of bladder function in awake mice
eLife 11:e79378.
https://doi.org/10.7554/eLife.79378

Share this article

https://doi.org/10.7554/eLife.79378

Further reading

    1. Medicine
    2. Neuroscience
    Flora Moujaes, Jie Lisa Ji ... Alan Anticevic
    Research Article

    Background:

    Ketamine has emerged as one of the most promising therapies for treatment-resistant depression. However, inter-individual variability in response to ketamine is still not well understood and it is unclear how ketamine’s molecular mechanisms connect to its neural and behavioral effects.

    Methods:

    We conducted a single-blind placebo-controlled study, with participants blinded to their treatment condition. 40 healthy participants received acute ketamine (initial bolus 0.23 mg/kg, continuous infusion 0.58 mg/kg/hr). We quantified resting-state functional connectivity via data-driven global brain connectivity and related it to individual ketamine-induced symptom variation and cortical gene expression targets.

    Results:

    We found that: (i) both the neural and behavioral effects of acute ketamine are multi-dimensional, reflecting robust inter-individual variability; (ii) ketamine’s data-driven principal neural gradient effect matched somatostatin (SST) and parvalbumin (PVALB) cortical gene expression patterns in humans, while the mean effect did not; and (iii) behavioral data-driven individual symptom variation mapped onto distinct neural gradients of ketamine, which were resolvable at the single-subject level.

    Conclusions:

    These results highlight the importance of considering individual behavioral and neural variation in response to ketamine. They also have implications for the development of individually precise pharmacological biomarkers for treatment selection in psychiatry.

    Funding:

    This study was supported by NIH grants DP5OD012109-01 (A.A.), 1U01MH121766 (A.A.), R01MH112746 (J.D.M.), 5R01MH112189 (A.A.), 5R01MH108590 (A.A.), NIAAA grant 2P50AA012870-11 (A.A.); NSF NeuroNex grant 2015276 (J.D.M.); Brain and Behavior Research Foundation Young Investigator Award (A.A.); SFARI Pilot Award (J.D.M., A.A.); Heffter Research Institute (Grant No. 1–190420) (FXV, KHP); Swiss Neuromatrix Foundation (Grant No. 2016–0111) (FXV, KHP); Swiss National Science Foundation under the framework of Neuron Cofund (Grant No. 01EW1908) (KHP); Usona Institute (2015 – 2056) (FXV).

    Clinical trial number:

    NCT03842800

    1. Neuroscience
    Lies Deceuninck, Fabian Kloosterman
    Research Article Updated

    Storing and accessing memories is required to successfully perform day-to-day tasks, for example for engaging in a meaningful conversation. Previous studies in both rodents and primates have correlated hippocampal cellular activity with behavioral expression of memory. A key role has been attributed to awake hippocampal replay – a sequential reactivation of neurons representing a trajectory through space. However, it is unclear if awake replay impacts immediate future behavior, gradually creates and stabilizes long-term memories over a long period of time (hours and longer), or enables the temporary memorization of relevant events at an intermediate time scale (seconds to minutes). In this study, we aimed to address the uncertainty around the timeframe of impact of awake replay by collecting causal evidence from behaving rats. We detected and disrupted sharp wave ripples (SWRs) - signatures of putative replay events - using electrical stimulation of the ventral hippocampal commissure in rats that were trained on three different spatial memory tasks. In each task, rats were required to memorize a new set of locations in each trial or each daily session. Interestingly, the rats performed equally well with or without SWR disruptions. These data suggest that awake SWRs - and potentially replay - does not affect the immediate behavior nor the temporary memorization of relevant events at a short timescale that are required to successfully perform the spatial tasks. Based on these results, we hypothesize that the impact of awake replay on memory and behavior is long-term and cumulative over time.