Machine learning-assisted fluoroscopy of bladder function in awake mice

  1. Helene De Bruyn
  2. Nikky Corthout
  3. Sebastian Munck
  4. Wouter Everaerts
  5. Thomas Voets  Is a corresponding author
  1. VIB-KU Leuven Center for Brain & Disease Research, Belgium
  2. KU Leuven, Belgium

Abstract

Understanding the lower urinary tract (LUT) and development of highly needed novel therapies to treat LUT disorders depends on accurate techniques to monitor LUT (dys)function in preclinical models. We recently developed videocystometry in rodents, which combines intravesical pressure measurements with X-ray-based fluoroscopy of the LUT, allowing the in vivo analysis of the process of urine storage and voiding with unprecedented detail. Videocystometry relies on the precise contrast-based determination of the bladder volume at high temporal resolution, which can readily be achieved in anesthetized or otherwise motion-restricted mice but not in awake and freely moving animals. To overcome this limitation, we developed a machine-learning method, in which we trained a neural network to automatically detect the bladder in fluoroscopic images, allowing the automatic analysis of bladder filling and voiding cycles based on large sets of time-lapse fluoroscopic images (>3 hours at 30 images/second) from behaving mice and in a non-invasive manner. With this approach, we found that urethane, an injectable anesthetic that is commonly used in preclinical urological research, has a profound, dose-dependent effect on urethral relaxation and voiding duration. Moreover, both in awake and in anaesthetized mice, the bladder capacity was decreased ~4-fold when cystometry was performed acutely after surgical implantation of a suprapubic catheter. Our findings provide a paradigm for the non-invasive, in vivo monitoring of a hollow organ in behaving animals and pinpoint important limitations of the current gold standard techniques to study the LUT in mice.

Data availability

Raw data for Figures 1-4 are available via https://doi.org/10.6084/m9.figshare.19826050.v1.

The following data sets were generated

Article and author information

Author details

  1. Helene De Bruyn

    Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  2. Nikky Corthout

    VIB BioImaging Core, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Sebastian Munck

    VIB BioImaging Core, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Wouter Everaerts

    Department of Development and Regeneration, KU Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3157-7115
  5. Thomas Voets

    Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
    For correspondence
    thomas.voets@kuleuven.vib.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5526-5821

Funding

Fonds Wetenschappelijk Onderzoek (I001322N)

  • Sebastian Munck

Fonds Wetenschappelijk Onderzoek (G0B7620N)

  • Thomas Voets

Fonds Wetenschappelijk Onderzoek (I000321N)

  • Sebastian Munck

KU Leuven (KA/20/085)

  • Sebastian Munck

KU Leuven (IDN/19/039)

  • Sebastian Munck

Fonds Wetenschappelijk Onderzoek (Senior Clinical Investigator fellowship)

  • Wouter Everaerts

Fonds Wetenschappelijk Onderzoek (G066322N)

  • Wouter Everaerts

KU Leuven (C24M/21/028)

  • Wouter Everaerts

Queen Elisabeth Medical Foundation

  • Thomas Voets

Vlaams Instituut voor Biotechnologie (Unrestricted grant)

  • Thomas Voets

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were carried out after approval of the Ethical Committee Laboratory Animals of the Faculty of Biomedical Sciences of the KU Leuven under project number P035/2018.

Copyright

© 2022, De Bruyn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 748
    views
  • 246
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Helene De Bruyn
  2. Nikky Corthout
  3. Sebastian Munck
  4. Wouter Everaerts
  5. Thomas Voets
(2022)
Machine learning-assisted fluoroscopy of bladder function in awake mice
eLife 11:e79378.
https://doi.org/10.7554/eLife.79378

Share this article

https://doi.org/10.7554/eLife.79378

Further reading

    1. Neuroscience
    Masahiro Takigawa, Marta Huelin Gorriz ... Daniel Bendor
    Research Article

    During rest and sleep, memory traces replay in the brain. The dialogue between brain regions during replay is thought to stabilize labile memory traces for long-term storage. However, because replay is an internally-driven, spontaneous phenomenon, it does not have a ground truth - an external reference that can validate whether a memory has truly been replayed. Instead, replay detection is based on the similarity between the sequential neural activity comprising the replay event and the corresponding template of neural activity generated during active locomotion. If the statistical likelihood of observing such a match by chance is sufficiently low, the candidate replay event is inferred to be replaying that specific memory. However, without the ability to evaluate whether replay detection methods are successfully detecting true events and correctly rejecting non-events, the evaluation and comparison of different replay methods is challenging. To circumvent this problem, we present a new framework for evaluating replay, tested using hippocampal neural recordings from rats exploring two novel linear tracks. Using this two-track paradigm, our framework selects replay events based on their temporal fidelity (sequence-based detection), and evaluates the detection performance using each event's track discriminability, where sequenceless decoding across both tracks is used to quantify whether the track replaying is also the most likely track being reactivated.

    1. Neuroscience
    Andrew E Worthy, Joanna T Anderson ... Francisco J Alvarez
    Research Article

    Spinal cord interneurons play critical roles shaping motor output, but their precise identity and connectivity remain unclear. Focusing on the V1 interneuron cardinal class we defined four major V1 subsets in the mouse according to neurogenesis, genetic lineage-tracing, synaptic output to motoneurons, and synaptic inputs from muscle afferents. Sequential neurogenesis delineates different V1 subsets: two early born (Renshaw and Pou6f2) and two late born (Foxp2 and Sp8). Early born Renshaw cells and late born Foxp2-V1 interneurons are tightly coupled to motoneurons, while early born Pou6f2-V1 and late born Sp8-V1 interneurons are not, indicating that timing of neurogenesis does not correlate with motoneuron targeting. V1 clades also differ in cell numbers and diversity. Lineage labeling shows that the Foxp2-V1 clade contains over half of all V1 interneurons, provides the largest inhibitory input to motoneuron cell bodies, and includes subgroups that differ in birthdate, location, and proprioceptive input. Notably, one Foxp2-V1 subgroup, defined by postnatal Otp expression, is positioned near the LMC and receives substantial input from proprioceptors, consistent with an involvement in reciprocal inhibitory pathways. Combined tracing of ankle flexor sensory afferents and interneurons monosynaptically connected to ankle extensors confirmed placement of Foxp2-V1 interneurons in reciprocal inhibitory pathways. Our results validate previously proposed V1 clades as unique functional subtypes that differ in circuit placement, with Foxp2-V1 cells forming the most heterogeneous subgroup. We discuss how V1 organizational diversity enables understanding of their roles in motor control, with implications for their diverse ontogenetic and phylogenetic origins.