Inflammatory stress signaling via NF-kB alters accessible cholesterol to upregulate SREBP2 transcriptional activity in endothelial cells

  1. Joseph Wayne M Fowler
  2. Rong Zhang
  3. Bo Tao
  4. Nabil E Boutagy
  5. William C Sessa  Is a corresponding author
  1. Yale University, United States

Abstract

There is a growing appreciation that a tight relationship exists between cholesterol homeostasis and immunity in leukocytes, however, this relationship has not been deeply explored in the vascular endothelium. Endothelial cells (ECs) rapidly respond to extrinsic signals, such as tissue damage or microbial infection, by upregulating factors to activate and recruit circulating leukocytes to the site of injury and aberrant activation of ECs leads to inflammatory based diseases, such as multiple sclerosis and atherosclerosis. Here, we studied the role of cholesterol and a key transcription regulator of cholesterol homeostasis, SREBP2, in the EC responses to inflammatory stress. Treatment of primary human ECs with pro-inflammatory cytokines upregulated SREBP2 cleavage and cholesterol biosynthetic gene expression within the late phase of the acute inflammatory response. Furthermore, SREBP2 activation was dependent on NF-kB DNA binding and canonical SCAP-SREBP2 processing. Mechanistically, inflammatory activation of SREBP was mediated by a reduction in accessible cholesterol, leading to heightened sterol sensing and downstream SREBP2 cleavage. Detailed analysis of NF-kB inducible genes that may impact sterol sensing resulted in the identification of a novel RELA-inducible target, STARD10, that mediates accessible cholesterol homeostasis in ECs. Thus, this study provides an in-depth characterization of the relationship between cholesterol homeostasis and the acute inflammatory response in EC.

Data availability

Sequencing data have been deposited in GEO under accession code GSE201466.All data generated or analysed during this study are included in the manuscript and supporting file; Source Data files have been provided for all figures.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Joseph Wayne M Fowler

    Department of Pharmacology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Rong Zhang

    Department of Pharmacology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bo Tao

    Department of Pharmacology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nabil E Boutagy

    Department of Pharmacology, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. William C Sessa

    Department of Pharmacology, Yale University, New Haven, United States
    For correspondence
    william.sessa@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5759-1938

Funding

NIH

  • William C Sessa

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animals were handed according to approved institutional animal care and use committee (IACUC) protocols (#07919-2020) of Yale University.

Reviewing Editor

  1. Edward A Fisher, New York University Grossman School of Medicine, United States

Publication history

  1. Received: April 15, 2022
  2. Preprint posted: May 5, 2022 (view preprint)
  3. Accepted: August 11, 2022
  4. Accepted Manuscript published: August 12, 2022 (version 1)
  5. Version of Record published: August 22, 2022 (version 2)

Copyright

© 2022, Fowler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,494
    Page views
  • 394
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph Wayne M Fowler
  2. Rong Zhang
  3. Bo Tao
  4. Nabil E Boutagy
  5. William C Sessa
(2022)
Inflammatory stress signaling via NF-kB alters accessible cholesterol to upregulate SREBP2 transcriptional activity in endothelial cells
eLife 11:e79529.
https://doi.org/10.7554/eLife.79529

Further reading

    1. Immunology and Inflammation
    Sindhu Mohandas, Prasanna Jagannathan ... RECOVER Mechanistic Pathways Task Force
    Review Article

    With a global tally of more than 500 million cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections to date, there are growing concerns about the post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Recent studies suggest that exaggerated immune responses are key determinants of the severity and outcomes of the initial SARS-CoV-2 infection as well as subsequent PASC. The complexity of the innate and adaptive immune responses in the acute and post-acute period requires in-depth mechanistic analyses to identify specific molecular signals as well as specific immune cell populations which promote PASC pathogenesis. In this review, we examine the current literature on mechanisms of immune dysregulation in severe COVID-19 and the limited emerging data on the immunopathology of PASC. While the acute and post-acute phases may share some parallel mechanisms of immunopathology, it is likely that PASC immunopathology is quite distinct and heterogeneous, thus requiring large-scale longitudinal analyses in patients with and without PASC after an acute SARS-CoV-2 infection. By outlining the knowledge gaps in the immunopathology of PASC, we hope to provide avenues for novel research directions that will ultimately lead to precision therapies which restore healthy immune function in PASC patients.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Magdalena L Russell, Noah Simon ... Frederick A Matsen IV
    Research Article

    To appropriately defend against a wide array of pathogens, humans somatically generate highly diverse repertoires of B cell and T cell receptors (BCRs and TCRs) through a random process called V(D)J recombination. Receptor diversity is achieved during this process through both the combinatorial assembly of V(D)J-genes and the junctional deletion and insertion of nucleotides. While the Artemis protein is often regarded as the main nuclease involved in V(D)J recombination, the exact mechanism of nucleotide trimming is not understood. Using a previously published TCRβ repertoire sequencing data set, we have designed a flexible probabilistic model of nucleotide trimming that allows us to explore various mechanistically interpretable sequence-level features. We show that local sequence context, length, and GC nucleotide content in both directions of the wider sequence, together, can most accurately predict the trimming probabilities of a given V-gene sequence. Because GC nucleotide content is predictive of sequence-breathing, this model provides quantitative statistical evidence regarding the extent to which double-stranded DNA may need to be able to breathe for trimming to occur. We also see evidence of a sequence motif that appears to get preferentially trimmed, independent of GC-content-related effects. Further, we find that the inferred coefficients from this model provide accurate prediction for V- and J-gene sequences from other adaptive immune receptor loci. These results refine our understanding of how the Artemis nuclease may function to trim nucleotides during V(D)J recombination and provide another step toward understanding how V(D)J recombination generates diverse receptors and supports a powerful, unique immune response in healthy humans.