Variation in ubiquitin system genes creates substrate-specific effects on proteasomal protein degradation

  1. Mahlon A Collins  Is a corresponding author
  2. Gemechu Mekonnen
  3. Frank Wolfgang Albert  Is a corresponding author
  1. University of Minnesota, United States

Abstract

Precise control of protein degradation is critical for life, yet how natural genetic variation affects this essential process is largely unknown. Here, we developed a statistically powerful mapping approach to characterize how genetic variation affects protein degradation by the ubiquitin-proteasome system (UPS). Using the yeast Saccharomyces cerevisiae, we systematically mapped genetic influences on the N-end rule, a UPS pathway in which protein N-terminal amino acids function as degradation-promoting signals. Across all 20 possible N-terminal amino acids, we identified 149 genomic loci that influence UPS activity, many of which had pathway- or substrate-specific effects. Fine-mapping of four loci identified multiple causal variants in each of four ubiquitin system genes whose products process (NTA1), recognize (UBR1 and DOA10), and ubiquitinate (UBC6) cellular proteins. A cis-acting promoter variant that modulates UPS activity by altering UBR1 expression alters the abundance of 36 proteins without affecting levels of the corresponding mRNAs. Our results reveal a complex genetic basis of variation in UPS activity.

Data availability

Raw sequencing reads from QTL mapping experiments are available from the NIH Sequence Read Archive under the Bioproject Accession PRJNA881749. Raw and processed RNA-seq data is available from the NIH Gene Expression Omnibus under the accession GSE213689. These datasets are fully available without restriction.Computational scripts used to process data, for statistical analysis, and to generate figures are available at: https://www.github.com/mac230/N-end_Rule_QTL_paper

The following data sets were generated

Article and author information

Author details

  1. Mahlon A Collins

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    For correspondence
    mahlon@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6799-5645
  2. Gemechu Mekonnen

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Frank Wolfgang Albert

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    For correspondence
    falbert@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1380-8063

Funding

National Institutes of Health (F32-GM128302)

  • Mahlon A Collins

National Institutes of Health (R35-GM124676)

  • Frank Wolfgang Albert

Pew Charitable Trusts (Scholarship in the Biomedical Sciences)

  • Frank Wolfgang Albert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Collins et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,158
    views
  • 250
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mahlon A Collins
  2. Gemechu Mekonnen
  3. Frank Wolfgang Albert
(2022)
Variation in ubiquitin system genes creates substrate-specific effects on proteasomal protein degradation
eLife 11:e79570.
https://doi.org/10.7554/eLife.79570

Share this article

https://doi.org/10.7554/eLife.79570

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Showkat Ahmad Dar, Sulochan Malla ... Manolis Maragkakis
    Research Article

    Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5ʹ end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5ʹ end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.

    1. Genetics and Genomics
    2. Neuroscience
    Thomas P Spargo, Lachlan Gilchrist ... Alfredo Iacoangeli
    Research Article

    Continued methodological advances have enabled numerous statistical approaches for the analysis of summary statistics from genome-wide association studies. Genetic correlation analysis within specific regions enables a new strategy for identifying pleiotropy. Genomic regions with significant ‘local’ genetic correlations can be investigated further using state-of-the-art methodologies for statistical fine-mapping and variant colocalisation. We explored the utility of a genome-wide local genetic correlation analysis approach for identifying genetic overlaps between the candidate neuropsychiatric disorders, Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Parkinson’s disease, and schizophrenia. The correlation analysis identified several associations between traits, the majority of which were loci in the human leukocyte antigen region. Colocalisation analysis suggested that disease-implicated variants in these loci often differ between traits and, in one locus, indicated a shared causal variant between ALS and AD. Our study identified candidate loci that might play a role in multiple neuropsychiatric diseases and suggested the role of distinct mechanisms across diseases despite shared loci. The fine-mapping and colocalisation analysis protocol designed for this study has been implemented in a flexible analysis pipeline that produces HTML reports and is available at: https://github.com/ThomasPSpargo/COLOC-reporter.