Variation in ubiquitin system genes creates substrate-specific effects on proteasomal protein degradation

  1. Mahlon A Collins  Is a corresponding author
  2. Gemechu Mekonnen
  3. Frank Wolfgang Albert  Is a corresponding author
  1. University of Minnesota, United States

Abstract

Precise control of protein degradation is critical for life, yet how natural genetic variation affects this essential process is largely unknown. Here, we developed a statistically powerful mapping approach to characterize how genetic variation affects protein degradation by the ubiquitin-proteasome system (UPS). Using the yeast Saccharomyces cerevisiae, we systematically mapped genetic influences on the N-end rule, a UPS pathway in which protein N-terminal amino acids function as degradation-promoting signals. Across all 20 possible N-terminal amino acids, we identified 149 genomic loci that influence UPS activity, many of which had pathway- or substrate-specific effects. Fine-mapping of four loci identified multiple causal variants in each of four ubiquitin system genes whose products process (NTA1), recognize (UBR1 and DOA10), and ubiquitinate (UBC6) cellular proteins. A cis-acting promoter variant that modulates UPS activity by altering UBR1 expression alters the abundance of 36 proteins without affecting levels of the corresponding mRNAs. Our results reveal a complex genetic basis of variation in UPS activity.

Data availability

Raw sequencing reads from QTL mapping experiments are available from the NIH Sequence Read Archive under the Bioproject Accession PRJNA881749. Raw and processed RNA-seq data is available from the NIH Gene Expression Omnibus under the accession GSE213689. These datasets are fully available without restriction.Computational scripts used to process data, for statistical analysis, and to generate figures are available at: https://www.github.com/mac230/N-end_Rule_QTL_paper

The following data sets were generated

Article and author information

Author details

  1. Mahlon A Collins

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    For correspondence
    mahlon@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6799-5645
  2. Gemechu Mekonnen

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Frank Wolfgang Albert

    Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
    For correspondence
    falbert@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1380-8063

Funding

National Institutes of Health (F32-GM128302)

  • Mahlon A Collins

National Institutes of Health (R35-GM124676)

  • Frank Wolfgang Albert

Pew Charitable Trusts (Scholarship in the Biomedical Sciences)

  • Frank Wolfgang Albert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Magnus Nordborg, Gregor Mendel Institute, Austria

Version history

  1. Preprint posted: May 6, 2021 (view preprint)
  2. Received: April 19, 2022
  3. Accepted: October 10, 2022
  4. Accepted Manuscript published: October 11, 2022 (version 1)
  5. Version of Record published: November 2, 2022 (version 2)

Copyright

© 2022, Collins et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,015
    views
  • 233
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mahlon A Collins
  2. Gemechu Mekonnen
  3. Frank Wolfgang Albert
(2022)
Variation in ubiquitin system genes creates substrate-specific effects on proteasomal protein degradation
eLife 11:e79570.
https://doi.org/10.7554/eLife.79570

Share this article

https://doi.org/10.7554/eLife.79570

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Céline Petitgas, Laurent Seugnet ... Serge Birman
    Research Article

    Adenine phosphoribosyltransferase (APRT) and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) are two structurally related enzymes involved in purine recycling in humans. Inherited mutations that suppress HGPRT activity are associated with Lesch–Nyhan disease (LND), a rare X-linked metabolic and neurological disorder in children, characterized by hyperuricemia, dystonia, and compulsive self-injury. To date, no treatment is available for these neurological defects and no animal model recapitulates all symptoms of LND patients. Here, we studied LND-related mechanisms in the fruit fly. By combining enzymatic assays and phylogenetic analysis, we confirm that no HGPRT activity is expressed in Drosophila melanogaster, making the APRT homolog (Aprt) the only purine-recycling enzyme in this organism. Whereas APRT deficiency does not trigger neurological defects in humans, we observed that Drosophila Aprt mutants show both metabolic and neurobehavioral disturbances, including increased uric acid levels, locomotor impairments, sleep alterations, seizure-like behavior, reduced lifespan, and reduction of adenosine signaling and content. Locomotor defects could be rescued by Aprt re-expression in neurons and reproduced by knocking down Aprt selectively in the protocerebral anterior medial (PAM) dopaminergic neurons, the mushroom bodies, or glia subsets. Ingestion of allopurinol rescued uric acid levels in Aprt-deficient mutants but not neurological defects, as is the case in LND patients, while feeding adenosine or N6-methyladenosine (m6A) during development fully rescued the epileptic behavior. Intriguingly, pan-neuronal expression of an LND-associated mutant form of human HGPRT (I42T), but not the wild-type enzyme, resulted in early locomotor defects and seizure in flies, similar to Aprt deficiency. Overall, our results suggest that Drosophila could be used in different ways to better understand LND and seek a cure for this dramatic disease.

    1. Genetics and Genomics
    Gbolahan Bamgbose, Guillaume Bordet ... Alexei Tulin
    Research Article

    PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.