Computationally defined and in vitro validated putative genomic safe harbour loci for transgene expression in human cells

Abstract

Selection of the target site is an inherent question for any project aiming for directed transgene integration. Genomic safe harbour (GSH) loci have been proposed as safe sites in the human genome for transgene integration. Although several sites have been characterised for transgene integration in the literature, most of these do not meet criteria set out for a GSH and the limited set that do have not been characterised extensively. Here, we conducted a computational analysis using publicly available data to identify 25 unique putative GSH loci that reside in active chromosomal compartments. We validated stable transgene expression and minimal disruption of the native transcriptome in three GSH sites in vitro using human embryonic stem cells (hESCs) and their differentiated progeny. Furthermore, for easy targeted transgene expression, we have engineered constitutive landing pad expression constructs into the three validated GSH in hESCs.

Data availability

Unprocessed RNAseq FASTQ files generated for this study will be available from ENA: PRJEB49564 accession numbers: ERS16364945-ERS16364998.Custom computational scripts used for the GSH search will be available from https://github.com/foo-labHigh content imaging data will be available on Dryad.All other data generated during this study are included in the manuscript and supporting file

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Matias I Autio

    Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
    For correspondence
    autiomi@gis.a-star.edu.sg
    Competing interests
    Matias I Autio, Patent application PCT/SG2022/050888.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9579-9617
  2. Efthymios Motakis

    Cardiovascular Disease Translational Research Programme, National University of Singapore, Singapore, Singapore
    Competing interests
    Efthymios Motakis, Patent application PCT/SG2022/050888.
  3. Arnaud Perrin

    Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    Arnaud Perrin, Patent application PCT/SG2022/050888.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3545-5470
  4. Talal Bin Amin

    Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    No competing interests declared.
  5. Zenia Tiang

    Cardiovascular Disease Translational Research Programme, National University of Singapore, Singapore, Singapore
    Competing interests
    No competing interests declared.
  6. Dang Vinh Do

    Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    No competing interests declared.
  7. Jiaxu Wang

    Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    No competing interests declared.
  8. Joanna Kia Min Tan

    Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    No competing interests declared.
  9. Shirley Suet Lee Ding

    Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    No competing interests declared.
  10. Wei Xuan Tan

    Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    No competing interests declared.
  11. Chang Jie Mick Lee

    Cardiovascular Disease Translational Research Programme, National University of Singapore, Singapore, Singapore
    Competing interests
    No competing interests declared.
  12. Adrian KK Teo

    Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5901-7075
  13. Roger Foo

    Cardiovascular Disease Translational Research Programme, National University of Singapore, Singapore, Singapore
    For correspondence
    roger.foo@nus.edu.sg
    Competing interests
    Roger Foo, Patent application PCT/SG2022/050888.

Funding

Biomedical Research Council (1610851033)

  • Matias I Autio

Agency for Science, Technology and Research (202D8020)

  • Matias I Autio

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were reviewed and approved ethics and animal care committees (IRB approval: A*STAR IRB 2020-096 & IACUC: 181366 and 221660).

Copyright

© 2024, Autio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,692
    views
  • 389
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matias I Autio
  2. Efthymios Motakis
  3. Arnaud Perrin
  4. Talal Bin Amin
  5. Zenia Tiang
  6. Dang Vinh Do
  7. Jiaxu Wang
  8. Joanna Kia Min Tan
  9. Shirley Suet Lee Ding
  10. Wei Xuan Tan
  11. Chang Jie Mick Lee
  12. Adrian KK Teo
  13. Roger Foo
(2024)
Computationally defined and in vitro validated putative genomic safe harbour loci for transgene expression in human cells
eLife 13:e79592.
https://doi.org/10.7554/eLife.79592

Share this article

https://doi.org/10.7554/eLife.79592

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Ruben Sebastian-Perez, Shoma Nakagawa ... Maria Pia Cosma
    Research Article

    Chromocenters are established after the 2-cell (2C) stage during mouse embryonic development, but the factors that mediate chromocenter formation remain largely unknown. To identify regulators of 2C heterochromatin establishment in mice, we generated an inducible system to convert embryonic stem cells (ESCs) to 2C-like cells. This conversion is marked by a global reorganization and dispersion of H3K9me3-heterochromatin foci, which are then reversibly formed upon re-entry into pluripotency. By profiling the chromatin-bound proteome (chromatome) through genome capture of ESCs transitioning to 2C-like cells, we uncover chromatin regulators involved in de novo heterochromatin formation. We identified TOPBP1 and investigated its binding partner SMARCAD1. SMARCAD1 and TOPBP1 associate with H3K9me3-heterochromatin in ESCs. Interestingly, the nuclear localization of SMARCAD1 is lost in 2C-like cells. SMARCAD1 or TOPBP1 depletion in mouse embryos leads to developmental arrest, reduction of H3K9me3, and remodeling of heterochromatin foci. Collectively, our findings contribute to comprehending the maintenance of chromocenters during early development.

    1. Stem Cells and Regenerative Medicine
    Tino Stauber, Greta Moschini ... Jess G Snedeker
    Research Article

    Tendinopathies are debilitating diseases currently increasing in prevalence and associated costs. There is a need to deepen our understanding of the underlying cell signaling pathways to unlock effective treatments. In this work, we screen cell signaling pathways in human tendinopathies and find positively enriched IL-6/JAK/STAT signaling alongside signatures of cell populations typically activated by IL-6 in other tissues. In human tendinopathic tendons, we also confirm the strong presence and co-localization of IL-6, IL-6R, and CD90, an established marker of reparative fibroblasts. To dissect the underlying causalities, we combine IL-6 knock-out mice with an explant-based assembloid model of tendon damage to successfully connect IL-6 signaling to reparative fibroblast activation and recruitment. Vice versa, we show that these reparative fibroblasts promote the development of tendinopathy hallmarks in the damaged explant upon IL-6 activation. We conclude that IL-6 activates tendon fibroblast populations which then initiate and deteriorate tendinopathy hallmarks.