Artificial selection methods from evolutionary computing show promise for directed evolution of microbes
Abstract
Directed microbial evolution harnesses evolutionary processes in the laboratory to construct microorganisms with enhanced or novel functional traits. Attempting to direct evolutionary processes for applied goals is fundamental to evolutionary computation, which harnesses the principles of Darwinian evolution as a general purpose search engine for solutions to challenging computational problems. Despite their overlapping approaches, artificial selection methods from evolutionary computing are not commonly applied to living systems in the laboratory. In this work, we ask if parent selection algorithms-procedures for choosing promising progenitors-from evolutionary computation might be useful for directing the evolution of microbial populations when selecting for multiple functional traits. To do so, we introduce an agent-based model of directed microbial evolution, which we used to evaluate how well three selection algorithms from evolutionary computing (tournament selection, lexicase selection, and non-dominated elite selection) performed relative to methods commonly used in the laboratory (elite and top-10% selection). We found that multi-objective selection techniques from evolutionary computing (lexicase and non-dominated elite) generally outperformed the commonly used directed evolution approaches when selecting for multiple traits of interest. Our results motivate ongoing work transferring these multi-objective selection procedures into the laboratory and a continued evaluation of more sophisticated artificial selection methods.
Data availability
Our source code for experiments, analyses, and visualizations is publicly available on GitHub (https://github.com/amlalejini/directed-digital-evolution). Our GitHub repository is publicly archived using Zenodo with the following DOI: 10.5281/zenodo.6403135.The data produced by our computational experiments are publicly available and archived on the Open Science Framework: https://osf.io/zn63x/ (DOI: 10.17605/OSF.IO/ZN63X).
-
Data from: Selection schemes from evolutionary computing show promise for directed evolution of microbesOpen Science Framework, 10.17605/OSF.IO/ZN63X.
Article and author information
Author details
Funding
National Science Foundation (DEB-1813069)
- Luis Zaman
National Science Foundation (MCB-1750125)
- Anya E Vostinar
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- C Brandon Ogbunugafor, Yale University, United States
Version history
- Preprint posted: April 2, 2022 (view preprint)
- Received: April 21, 2022
- Accepted: August 1, 2022
- Accepted Manuscript published: August 2, 2022 (version 1)
- Version of Record published: September 5, 2022 (version 2)
Copyright
© 2022, Lalejini et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,661
- Page views
-
- 265
- Downloads
-
- 2
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Neuroscience
Previous research has highlighted the role of glutamate and gamma-aminobutyric acid (GABA) in perceptual, cognitive, and motor tasks. However, the exact involvement of these neurochemical mechanisms in the chain of information processing, and across human development, is unclear. In a cross-sectional longitudinal design, we used a computational approach to dissociate cognitive, decision, and visuomotor processing in 293 individuals spanning early childhood to adulthood. We found that glutamate and GABA within the intraparietal sulcus (IPS) explained unique variance in visuomotor processing, with higher glutamate predicting poorer visuomotor processing in younger participants but better visuomotor processing in mature participants, while GABA showed the opposite pattern. These findings, which were neurochemically, neuroanatomically and functionally specific, were replicated ~21 mo later and were generalized in two further different behavioral tasks. Using resting functional MRI, we revealed that the relationship between IPS neurochemicals and visuomotor processing is mediated by functional connectivity in the visuomotor network. We then extended our findings to high-level cognitive behavior by predicting fluid intelligence performance. We present evidence that fluid intelligence performance is explained by IPS GABA and glutamate and is mediated by visuomotor processing. However, this evidence was obtained using an uncorrected alpha and needs to be replicated in future studies. These results provide an integrative biological and psychological mechanistic explanation that links cognitive processes and neurotransmitters across human development and establishes their potential involvement in intelligent behavior.
-
- Computational and Systems Biology
- Neuroscience
Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing ‘Go/No-go’ reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.