Lifelong regeneration of cerebellar Purkinje cells after induced cell ablation in zebrafish

  1. Sol Pose-Méndez  Is a corresponding author
  2. Paul Schramm
  3. Barbara Winter
  4. Jochen C Meier
  5. Konstantinos Ampatzis
  6. Reinhard W Köster  Is a corresponding author
  1. Technische Universität Braunschweig, Germany
  2. Karolinska Institute, Sweden

Abstract

Zebrafish have an impressive capacity to regenerate neurons in the central nervous system. However, regeneration of the principal neuron of the evolutionary conserved cerebellum, the Purkinje cell (PC), is believed to be limited to developmental stages based on invasive lesions. In contrast, non-invasive cell type specific ablation by induced apoptosis closely represents a process of neurodegeneration. We demonstrate that the ablated larval PC population entirely recovers in number, quickly reestablishes electrophysiological properties, and properly integrates into circuits to regulate cerebellum-controlled behavior. PC progenitors are present in larvae and adults, and PC ablation in adult cerebelli results in an impressive PC regeneration of different PC subtypes able to restore behavioral impairments. Interestingly, caudal PCs are more resistant to ablation and regenerate more efficiently, suggesting a rostro-caudal pattern of de- and regeneration properties. These findings demonstrate that the zebrafish cerebellum is able to regenerate functional PCs during all stages of the animal's life.

Data availability

Detailed numbers for statistics shown in the figures are provided in Supplementary Table 1. All data generated or analyzed during this study are included in the manuscript and supporting files.Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact.

Article and author information

Author details

  1. Sol Pose-Méndez

    Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    For correspondence
    s.pose-mendez@tu-braunschweig.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Paul Schramm

    Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0894-2348
  3. Barbara Winter

    Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Jochen C Meier

    Cell Physiology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Konstantinos Ampatzis

    Neuroscience Department, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7998-6463
  6. Reinhard W Köster

    Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    For correspondence
    r.koester@tu-bs.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6593-8196

Funding

Horizon 2020 Framework Programme (H2020-MSCA-IF-2015,No 703961)

  • Sol Pose-Méndez

Volkswagen Foundation (HOMEO-HIRN,ZN3673)

  • Jochen C Meier
  • Reinhard W Köster

Bundesministerium für Bildung und Forschung (Era-Net NEURON II CIPRESS)

  • Jochen C Meier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols for animal research were approved by governmental authorities of Lower Saxony, LAVES, (AZ33.19-42502-04-20/3593). All efforts were made to use only the minimum number of experimental animals necessary to obtain reliable scientific data.

Copyright

© 2023, Pose-Méndez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,690
    views
  • 244
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sol Pose-Méndez
  2. Paul Schramm
  3. Barbara Winter
  4. Jochen C Meier
  5. Konstantinos Ampatzis
  6. Reinhard W Köster
(2023)
Lifelong regeneration of cerebellar Purkinje cells after induced cell ablation in zebrafish
eLife 12:e79672.
https://doi.org/10.7554/eLife.79672

Share this article

https://doi.org/10.7554/eLife.79672

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.