Lifelong regeneration of cerebellar Purkinje cells after induced cell ablation in zebrafish

  1. Sol Pose-Méndez  Is a corresponding author
  2. Paul Schramm
  3. Barbara Winter
  4. Jochen C Meier
  5. Konstantinos Ampatzis
  6. Reinhard W Köster  Is a corresponding author
  1. Technische Universität Braunschweig, Germany
  2. Karolinska Institute, Sweden

Abstract

Zebrafish have an impressive capacity to regenerate neurons in the central nervous system. However, regeneration of the principal neuron of the evolutionary conserved cerebellum, the Purkinje cell (PC), is believed to be limited to developmental stages based on invasive lesions. In contrast, non-invasive cell type specific ablation by induced apoptosis closely represents a process of neurodegeneration. We demonstrate that the ablated larval PC population entirely recovers in number, quickly reestablishes electrophysiological properties, and properly integrates into circuits to regulate cerebellum-controlled behavior. PC progenitors are present in larvae and adults, and PC ablation in adult cerebelli results in an impressive PC regeneration of different PC subtypes able to restore behavioral impairments. Interestingly, caudal PCs are more resistant to ablation and regenerate more efficiently, suggesting a rostro-caudal pattern of de- and regeneration properties. These findings demonstrate that the zebrafish cerebellum is able to regenerate functional PCs during all stages of the animal's life.

Data availability

Detailed numbers for statistics shown in the figures are provided in Supplementary Table 1. All data generated or analyzed during this study are included in the manuscript and supporting files.Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact.

Article and author information

Author details

  1. Sol Pose-Méndez

    Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    For correspondence
    s.pose-mendez@tu-braunschweig.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Paul Schramm

    Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0894-2348
  3. Barbara Winter

    Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Jochen C Meier

    Cell Physiology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Konstantinos Ampatzis

    Neuroscience Department, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7998-6463
  6. Reinhard W Köster

    Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    For correspondence
    r.koester@tu-bs.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6593-8196

Funding

Horizon 2020 Framework Programme (H2020-MSCA-IF-2015,No 703961)

  • Sol Pose-Méndez

Volkswagen Foundation (HOMEO-HIRN,ZN3673)

  • Jochen C Meier
  • Reinhard W Köster

Bundesministerium für Bildung und Forschung (Era-Net NEURON II CIPRESS)

  • Jochen C Meier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Paola Bovolenta, CSIC-UAM, Spain

Ethics

Animal experimentation: All experimental protocols for animal research were approved by governmental authorities of Lower Saxony, LAVES, (AZ33.19-42502-04-20/3593). All efforts were made to use only the minimum number of experimental animals necessary to obtain reliable scientific data.

Version history

  1. Received: April 22, 2022
  2. Preprint posted: May 10, 2022 (view preprint)
  3. Accepted: April 11, 2023
  4. Accepted Manuscript published: April 12, 2023 (version 1)
  5. Version of Record published: April 28, 2023 (version 2)

Copyright

© 2023, Pose-Méndez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,452
    views
  • 207
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sol Pose-Méndez
  2. Paul Schramm
  3. Barbara Winter
  4. Jochen C Meier
  5. Konstantinos Ampatzis
  6. Reinhard W Köster
(2023)
Lifelong regeneration of cerebellar Purkinje cells after induced cell ablation in zebrafish
eLife 12:e79672.
https://doi.org/10.7554/eLife.79672

Share this article

https://doi.org/10.7554/eLife.79672

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.