Lifelong regeneration of cerebellar Purkinje cells after induced cell ablation in zebrafish

  1. Sol Pose-Méndez  Is a corresponding author
  2. Paul Schramm
  3. Barbara Winter
  4. Jochen C Meier
  5. Konstantinos Ampatzis
  6. Reinhard W Köster  Is a corresponding author
  1. Technische Universität Braunschweig, Germany
  2. Karolinska Institute, Sweden

Abstract

Zebrafish have an impressive capacity to regenerate neurons in the central nervous system. However, regeneration of the principal neuron of the evolutionary conserved cerebellum, the Purkinje cell (PC), is believed to be limited to developmental stages based on invasive lesions. In contrast, non-invasive cell type specific ablation by induced apoptosis closely represents a process of neurodegeneration. We demonstrate that the ablated larval PC population entirely recovers in number, quickly reestablishes electrophysiological properties, and properly integrates into circuits to regulate cerebellum-controlled behavior. PC progenitors are present in larvae and adults, and PC ablation in adult cerebelli results in an impressive PC regeneration of different PC subtypes able to restore behavioral impairments. Interestingly, caudal PCs are more resistant to ablation and regenerate more efficiently, suggesting a rostro-caudal pattern of de- and regeneration properties. These findings demonstrate that the zebrafish cerebellum is able to regenerate functional PCs during all stages of the animal's life.

Data availability

Detailed numbers for statistics shown in the figures are provided in Supplementary Table 1. All data generated or analyzed during this study are included in the manuscript and supporting files.Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact.

Article and author information

Author details

  1. Sol Pose-Méndez

    Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    For correspondence
    s.pose-mendez@tu-braunschweig.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Paul Schramm

    Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0894-2348
  3. Barbara Winter

    Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Jochen C Meier

    Cell Physiology, Technische Universität Braunschweig, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Konstantinos Ampatzis

    Neuroscience Department, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7998-6463
  6. Reinhard W Köster

    Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
    For correspondence
    r.koester@tu-bs.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6593-8196

Funding

Horizon 2020 Framework Programme (H2020-MSCA-IF-2015,No 703961)

  • Sol Pose-Méndez

Volkswagen Foundation (HOMEO-HIRN,ZN3673)

  • Jochen C Meier
  • Reinhard W Köster

Bundesministerium für Bildung und Forschung (Era-Net NEURON II CIPRESS)

  • Jochen C Meier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols for animal research were approved by governmental authorities of Lower Saxony, LAVES, (AZ33.19-42502-04-20/3593). All efforts were made to use only the minimum number of experimental animals necessary to obtain reliable scientific data.

Copyright

© 2023, Pose-Méndez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,796
    views
  • 254
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sol Pose-Méndez
  2. Paul Schramm
  3. Barbara Winter
  4. Jochen C Meier
  5. Konstantinos Ampatzis
  6. Reinhard W Köster
(2023)
Lifelong regeneration of cerebellar Purkinje cells after induced cell ablation in zebrafish
eLife 12:e79672.
https://doi.org/10.7554/eLife.79672

Share this article

https://doi.org/10.7554/eLife.79672

Further reading

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.

    1. Developmental Biology
    Alexandra V Bruter, Ekaterina A Varlamova ... Victor V Tatarskiy
    Research Article

    CDK8 and CDK19 paralogs are regulatory kinases associated with the transcriptional Mediator complex. We have generated mice with the systemic inducible Cdk8 knockout on the background of Cdk19 constitutive knockout. Cdk8/19 double knockout (iDKO) males, but not single Cdk8 or Cdk19 KO, had an atrophic reproductive system and were infertile. The iDKO males lacked postmeiotic spermatids and spermatocytes after meiosis I pachytene. Testosterone levels were decreased whereas the amounts of the luteinizing hormone were unchanged. Single-cell RNA sequencing showed marked differences in the expression of steroidogenic genes (such as Cyp17a1, Star, and Fads) in Leydig cells concomitant with alterations in Sertoli cells and spermatocytes, and were likely associated with an impaired synthesis of steroids. Star and Fads were also downregulated in cultured Leydig cells after iDKO. The treatment of primary Leydig cell culture with a CDK8/19 inhibitor did not induce the same changes in gene expression as iDKO, and a prolonged treatment of mice with a CDK8/19 inhibitor did not affect the size of testes. iDKO, in contrast to the single knockouts or treatment with a CDK8/19 kinase inhibitor, led to depletion of cyclin C (CCNC), the binding partner of CDK8/19 that has been implicated in CDK8/19-independent functions. This suggests that the observed phenotype was likely mediated through kinase-independent activities of CDK8/19, such as CCNC stabilization.