Adaptation to glucose starvation is associated with molecular reorganization of the circadian clock in Neurospora crassa

  1. Anita Szőke
  2. Orsolya Sárkány
  3. Géza Schermann
  4. Orsolya Kapuy
  5. Axel CR Diernfellner
  6. Michael Brunner
  7. Norbert Gyöngyösi
  8. Krisztina Káldi  Is a corresponding author
  1. Department of Physiology, Semmelweis University, Hungary
  2. Department of Neurovascular Cellbiology, University Hospital Bonn, Germany
  3. Department of Molecular Biology, Semmelweis University, Hungary
  4. Biochemistry Center, Heidelberg University, Germany
7 figures, 2 tables and 3 additional files

Figures

Figure 1 with 2 supplements
Despite changes of the stoichiometry of clock components circadian time-measuring is sustained upon glucose depletion.

(A) Neurospora growth is arrested in starvation medium. Following an incubation for 24 hr in standard liquid medium, mycelia were transferred to media containing either 2% or 0.01% glucose. Diameter of the mycelial balls was measured each day. The arrow indicates the time of medium change. (n=3, ± SEM, Repeated measures ANOVA, significant time-treatment interaction; post hoc analysis: Fisher LSD test). (B) Long-term glucose starvation affects expression of clock proteins in wt. Mycelial discs were incubated for 24 hr in standard liquid medium and then transferred to starvation medium (time point 0). Samples were harvested at the indicated time points. Cell extracts were analyzed by western blotting. Solid and dashed arrows indicate hyper- and hypophosphorylated forms of FRQ, respectively. RGB-1 and Ponceau staining (LC: loading control) are shown as loading controls. (n=3) See also A. (C) RNA levels of frq, wc-1 and wc-2 are similar under standard and nutrient limited conditions. Mycelial discs of the wt strain were incubated in standard liquid medium for 24 hr, then transferred to fresh media containing either 0.01% or 2% glucose and incubated for 40 hr in LL. RNA levels were normalized to that in cells grown in standard medium. (n=9–22, ± SEM, two-sample t-test, n.s.). (D) Stability of frq RNA is not affected by starvation. Growth conditions were described in (C). Following 40 hr of incubation in LL, cultures were transferred to DD (time point 0). Samples were harvested at the indicated time points. RNA levels were normalized to those measured at time point 0. (n=6, ± SEM, Repeated measures ANOVA, n.s.). (E) Left panel: FRQ level oscillates under starvation conditions in DD. Following an incubation in standard liquid medium for 24 hr, mycelia were transferred to standard or starvation medium. After 24 hr incubation in LL, cultures were transferred to DD. Samples were harvested at the indicated time points. (n=3, LC: loading control) Right panel: FRQ specific signals were analyzed by densitometry. (n=4–6). (F) WC levels are reduced and FRQ is hyperphosphorylated during glucose starvation. The experiment was performed as described in (E). Cell extracts from both growth conditions were analyzed on the same gel. (n=3, LC: loading control). (G) Expression of frq and ccg-2 is rhythmic during long-term glucose starvation. Experiment was performed as described in (E). RNA levels were determined by qPCR. (n=3–11, ± SEM, Repeated measures ANOVA, n.s.).

Figure 1—source data 1

Source data for Figure 1B.

(a) Western blots were used to detect expression of FRQ in the indicated samples for Figure 1B. (b) Figure with the area highlighted was used to develop the Figure 1B for FRQ. (c) Western blots were used to detect expression of WC-1 in the indicated samples for Figure 1B. (d) Figure with the area highlighted was used to develop the Figure 1B for WC-1. (e) Western blots were used to detect expression of WC-2 in the indicated samples for Figure 1B. (f) Figure with the area highlighted was used to develop the Figure 1B for WC-2. (g) Western blots were used to detect expression of RGB1 in the indicated samples for Figure 1B. (h) Figure with the area highlighted was used to develop the Figure 1B for RGB1. (i) Ponceau S staining was used to detect loading control of the indicated samples for Figure 1B. (j) Figure with the area highlighted was used for LC of Figure 1B .

https://cdn.elifesciences.org/articles/79765/elife-79765-fig1-data1-v1.zip
Figure 1—source data 2

Source data for Figure 1E.

(a) Western blots were used to detect expression of FRQ in the indicated samples grown in 0.01% glucose containing medium for Figure 1E. (b) Figure with the area highlighted was used to develop the Figure 1E for FRQ in 0.01% glucose. (c) Western blots were used to detect expression of FRQ in the indicated samples grown in 2% glucose containing medium for Figure 1E. (d) Figure with the area highlighted was used to develop the Figure 1E for FRQ in 2% glucose. (e) Ponceau S staining was used to detect loading control of the indicated samples for Figure 1E (0.01% glucose). (f) Figure with the area highlighted was used to develop the Figure 1E for LC (0.01% glucose). (g) Ponceau S staining was used to detect loading control of the indicated samples for Figure 1E (2% glucose). (h) Figure with the area highlighted was used to detect loading control of the indicated samples for Figure 1E (2% glucose).

https://cdn.elifesciences.org/articles/79765/elife-79765-fig1-data2-v1.zip
Figure 1—source data 3

Source data for Figure 1F.

(a) Western blots were used to detect expression of FRQ in the indicated samples for Figure 1F. (b) Figure with the area highlighted was used to develop the Figure 1F for FRQ. (c) Western blots were used to detect expression of WC-1 in the indicated samples for Figure 1F. (d) Figure with the area highlighted was used to develop the Figure 1F for WC-1. (e) Western blots were used to detect expression of WC-2 in the indicated samples for Figure 1F. (f) Figure with the area highlighted was used to develop the Figure 1F for WC-2. (g) Ponceau S staining was used to detect loading control of the indicated samples for Figure 1F. (h) Figure with the area highlighted was used as LC for Figure 1F.

https://cdn.elifesciences.org/articles/79765/elife-79765-fig1-data3-v1.zip
Figure 1—source data 4

Actin levels are decreased in glucose starvation.

Experimental procedures were performed as described in Figure 1C. Ct values of the indicated genes were determined by qPCR. (n=3, ± SEM) In the last row, ratio of the expression levels (wt 0.01%/2%) are shown based on the RNAseq dataset.

https://cdn.elifesciences.org/articles/79765/elife-79765-fig1-data4-v1.docx
Figure 1—figure supplement 1
Analysis of expression changes in clock components.

(A) Calibration of the WCC expression levels in starvation. Protein gel was loaded with increasing quantities (3,13–50%) of wt lysates grown in 2% glucose containing medium and analysed by western blotting. WC-1 (left panel) and WC-2 (right panel) specific signals were analysed by densitometry and a calibration line was fitted by linear regression. Arrows indicate the amount of positive clock components in wt lysates grown in starvation medium. (B) Glucose starvation moderately reduces the stability of WC-1. Experimental procedures were performed as described in Figure 1C. Following 40 hr of starvation translation inhibitor cycloheximide (CHX) was added to the medium in a final concentration of 10 µg/ml (time point 0). Samples were harvested at the indicated time points following CHX addition. Left panel: Whole cell extracts were analysed by western blotting with the indicated antibodies. Solid and dashed arrows indicate hyper- and hypophosphorylated forms of WC-2 proteins, respectively. Short (s) and long (l) exposures are shown in order to get comparable signals in both conditions. (LC: loading control) Right panel: Signal densities of WC proteins were determined and normalized to the values detected in time point 0. (n=5, ± SEM).

Figure 1—figure supplement 1—source data 1

Source data for Figure 1—figure supplement 1B.

(a) Western blots were used to detect expression of WC-1 in the indicated samples for Figure 1—figure supplement 1B (s: short exposure). (b) Figure with the area highlighted was used to develop the Figure 1—figure supplement 1B for WC-1 (s: short exposure). (c) Western blots were used to detect expression of WC-1 in the indicated samples for Figure 1—figure supplement 1B (l: long exposure). (d) Figure with the area highlighted was used to develop the Figure 1—figure supplement 1B for WC-1 (l: long exposure). (e) Western blots were used to detect expression of WC-2 in the indicated samples for Figure 1—figure supplement 1B (s: short exposure). (f) Figure with the area highlighted was used to develop the Figure 1—figure supplement 1B for WC-2 (s: short exposure). (g) Western blots were used to detect expression of WC-2 in the indicated samples for Figure 1—figure supplement 1B (l: long exposure). (h) Figure with the area highlighted was used to develop the Figure 1—figure supplement 1B for WC-2 (l: long exposure). (i) Ponceau S staining was used to detect loading control of the indicated samples for Figure 1—figure supplement 1B. (j) Figure with the area highlighted was used as LC of Figure 1—figure supplement 1B.

https://cdn.elifesciences.org/articles/79765/elife-79765-fig1-figsupp1-data1-v1.zip
Figure 1—figure supplement 2
The circadian output is rhythmic in starvation.

Following an incubation in standard liquid medium for 24 hr, mycelia were transferred to fresh standard or starvation medium. After 24 hr of incubation in LL, cultures were transferred to DD. Samples were harvested at the indicated time points. Relative fluffy RNA levels were determined. (n=3–6, ± SEM).

Glucose deprivation impacts both light induction of gene expression and subcellular distribution of clock components.

(A) Light induction of gene expression is attenuated by glucose starvation. Mycelial discs of the wt strain were incubated in standard liquid medium for 24 hr, then transferred to media containing either 0.01% or 2% glucose. Following a 24 hr incubation in LL, cultures were transferred to DD for 16 hr and then light induced. Samples were harvested at the indicated time points after light on. Relative frq, wc-1 and al-2 RNA levels were normalized to that measured at the first time point. (n=5–11, ± SEM, Repeated measures ANOVA, significant time*treatment interaction, post hoc analysis: Tukey HSD test). (B) Glucose deprivation affects subcellular distribution of clock proteins. Growth conditions were as described in Figure 1C. Nuclear (N) and cytosolic (C) fractions were analyzed by Western blotting. (n=3, s: short exposure, l: long exposure, LC: loading control).

Figure 2—source data 1

Source data for Figure 2B.

(a) Western blots were used to detect expression of FRQ in the indicated samples for Figure 2B (s: short exposure). (b) Figure with the area highlighted was used to develop the Figure 2B for FRQ (s: short exposure). (c) Western blots were used to detect expression of FRQ in the indicated samples for Figure 2B (l: long exposure). (d) Figure with the area highlighted was used to develop the Figure 2B for FRQ (l: long exposure). (e) Western blots were used to detect expression of WC-1 in the indicated samples for Figure 2B (s: short exposure). (f) Figure with the area highlighted was used to develop the Figure 2B for WC-1 (s: short exposure). (g) Western blots were used to detect expression of WC-1 in the indicated samples for Figure 2B (l: long exposure). (h) Figure with the area highlighted was used to develop the Figure 2B for WC-1 (l: long exposure). (i) Western blots were used to detect expression of WC-2 in the indicated samples for Figure 2B (s: short exposure). (j) Figure with the area highlighted was used to develop the Figure 2B for WC-2 (s: short exposure). (k) Western blots were used to detect expression of WC-2 in the indicated samples for Figure 2B (l: long exposure). (l) Figure with the area highlighted was used to develop the Figure 2B for WC-2 (l: long exposure). (m) Ponceau S staining was used to detect loading control of the indicated samples for Figure 2B. (n) Figure with the area highlighted was used as LC for Figure 2B.

https://cdn.elifesciences.org/articles/79765/elife-79765-fig2-data1-v1.zip
FRQ, PKA, GSK and PP2A affect the starvation response of the Neurospora clock.

(A) frq9 RNA expression is sensitive to glucose deprivation. Growth conditions were as described in Figure 1C. RNA levels were normalized to that of wt grown in standard medium. (n=6, ± SEM, Factorial ANOVA; significant strain*treatment interaction; post hoc analysis: Tukey HSD test). (B) Effect of starvation on WC levels is reduced in frq9. Growth conditions were as described in Figure 1C. Cell extracts were analyzed by western blotting (left panel). (n=3) Protein signal density was analyzed (right panel). (n=3, ± SEM, LC: loading control for WC-2 (upper panel) and WC-1 (lower panel), Factorial ANOVA; significant strain*treatment interaction; post hoc analysis: Tukey HSD test). (C) Impaired FRQ-CK1a interaction affects the starvation response of the molecular clock. Experiments were performed with the indicated strains as described in Figure 1C. Indicated protein (upper panel) and frq expressions (lower panel) were analyzed. RNA levels were normalized to that of wt grown in standard medium. (n (protein analysis)=12, LC: loading control for FRQ and WC-2 (upper panel) and WC-1 (lower panel), n (RNA analysis)=4–5, ± SEM, Factorial ANOVA; significant strain effect; post hoc analysis: Tukey Unequal N HSD test). (D) The starvation response is altered in the PKA mutant (mcb). Experiments were performed with the indicated strains as described in Figure 1C. Upper panel: analysis of cell extracts by Western blotting (n=12, s: short exposure, l: long exposure; LC: loading control for FRQ (upper panel), WC-1 and WC-2 (lower panel)) Lower panel: frq RNA levels of the indicated strains. RNA levels were normalized to that of wt grown in standard medium. (n=8–9, ± SEM, Factorial ANOVA; significant treatment effect; post hoc analysis: Tukey Unequal N HSD test). (E) Hyperphosphorylation of FRQ upon glucose withdrawal is dependent on GSK. Experiments were performed with the indicated strains as described in Figure 1C. The medium was supplemented with 1.5*10–5M quinic acid (QA) during the first day of incubation. Following the medium change, mycelia were incubated in QA-free medium. Upper panel: cell extracts analyzed by Western blotting. (LC: loading control) Lower panel: frq RNA levels of the indicated strains. RNA levels were normalized to that of wt grown in standard medium. (n=6, ± SEM; Factorial ANOVA, significant strain*treatment interaction, post hoc analysis: Tukey HSD test). (F) PP2A activity is decreased under starvation conditions. Experiments were performed with the indicated strains as described in Figure 1C. PP2A-specific activity of the cell lysates was determined and normalized to that of the wt grown in standard medium. (n=3–4, ± SEM, Factorial ANOVA, Significant strain*treatment interaction, post hoc analysis: Tukey Unequal N HSD test). (G) The starvation response is altered in the strain lacking a functional PP2A regulatory subunit (rgb-1). Experimental procedures were performed with the indicated strains as described in Figure 1C. Cell extracts were analyzed by Western blotting (n=12, LC: loading control for FRQ (upper panel), for WC-1 (middle panel) for WC-2 (lower panel)) (left panel) and RNA levels of frq were determined. RNA levels were normalized to that of wt grown in standard medium. (n=9–10, ± SEM, Factorial ANOVA, significant strain*treatment interaction) (right panel).

Figure 3—source data 1

Source data for Figure 3B.

(a) Western blots were used to detect expression of WC-1 in the indicated samples for Figure 3B (s: short exposure). (b) Figure with the area highlighted was used to develop the Figure 3B for WC-1 (s: short exposure). (c) Western blots were used to detect expression of WC-1 in the indicated samples for Figure 3B (l: long exposure). (d) Figure with the area highlighted was used to develop the Figure 3B for WC-1 (l: long exposure). (e) Western blots were used to detect expression of WC-2 in the indicated samples for Figure 3B (s: short exposure). (f) Figure with the area highlighted was used to develop the Figure 3B for WC-2 (s: short exposure). (g) Western blots were used to detect expression of WC-2 in the indicated samples for Figure 3B (l: long exposure). (h) Figure with the area highlighted was used to develop the Figure 3B for WC-2 (l: long exposure). (i) Ponceau S staining was used to detect loading control of the indicated samples for Figure 3B. (j) Figure with the area highlighted was used to as LC for WC-1 in Figure 3B. (k) Figure with the area highlighted was used as LC for WC-2 in Figure 3B .

https://cdn.elifesciences.org/articles/79765/elife-79765-fig3-data1-v1.zip
Figure 3—source data 2

Source data for Figure 3C.

(a) Western blots were used to detect expression of FRQ in the indicated samples for Figure 3C. (b) Figure with the area highlighted was used to develop the Figure 3C for FRQ. (c) Western blots were used to detect expression of WC-1 in the indicated samples for Figure 3C. (d) Figure with the area highlighted was used to develop the Figure 3C for WC-1. (e) Western blots were used to detect expression of WC-2 in the indicated samples for Figure 3C. (f) Figure with the area highlighted was used to develop the Figure 3C for WC-2. (g) Ponceau S staining was used to detect loading control of WC-1 for Figure 3C. (h) Figure with the area highlighted was used to develop the Figure 3C for LC for WC-1. (i) Ponceau S staining was used to detect loading control of FRQ and WC-2 for Figure 3C. (j) Figure with the area highlighted was used as LC for FRQ and WC-2 for Figure 3C.

https://cdn.elifesciences.org/articles/79765/elife-79765-fig3-data2-v1.zip
Figure 3—source data 3

Source data for Figure 3D.

(a) Western blots were used to detect expression of FRQ in the indicated samples for Figure 3D (s: short exposure). (b) Figure with the area highlighted was used to develop the Figure 3D for FRQ (s: short exposure). (c) Western blots were used to detect expression of FRQ in the indicated samples for Figure 3D (l: long exposure). (d) Figure with the area highlighted was used to develop the Figure 3D for FRQ (l: long exposure). (e) Western blots were used to detect expression of WC-1 in the indicated samples for Figure 3D. (f) Figure with the area highlighted was used to develop the Figure 3D for WC-1. (g) Western blots were used to detect expression of WC-2 in the indicated samples for Figure 3D. (h) Figure with the area highlighted was used to develop the Figure 3D for WC-2. (i) Ponceau S staining was used to detect loading control of the indicated samples for Figure 3D. (j) Figure with the area highlighted was used as LC for FRQ in Figure 3D. (k) Figure with the area highlighted was used as LC for WC-1 and for WC-2 in Figure 3D .

https://cdn.elifesciences.org/articles/79765/elife-79765-fig3-data3-v1.zip
Figure 3—source data 4

Source data for Figure 3E.

(a) Western blots were used to detect expression of FRQ in the indicated samples for Figure 3E. (b) Figure with the area highlighted was used to develop the Figure 3E for FRQ. (c) Western blots were used to detect expression of WC-1 in the indicated samples for Figure 3E. (d) Figure with the area highlighted was used to develop the Figure 3E for WC-1. (e) Western blots were used to detect expression of WC-2 in the indicated samples for Figure 3E. (f) Figure with the area highlighted was used to develop the Figure 3E for WC-2. (g) Ponceau S staining was used to detect loading control of the indicated samples for Figure 3E. (h) Figure with the area highlighted was used as LC of Figure 3E.

https://cdn.elifesciences.org/articles/79765/elife-79765-fig3-data4-v1.zip
Figure 3—source data 5

Source data for Figure 3G.

(a) Western blots were used to detect expression of FRQ in the indicated samples for Figure 3G. (b) Figure with the area highlighted was used to develop the Figure 3G for FRQ. (c) Western blots were used to detect expression of WC-1 in the indicated samples for Figure 3G. (d) Figure with the area highlighted was used to develop the Figure 3G for WC-1. (e) Western blots were used to detect expression of WC-2 in the indicated samples for Figure 3G. (f) Figure with the area highlighted was used to develop the Figure 3G for WC-2. (g) Ponceau S staining was used to detect loading control of the indicated samples for Figure 3G for FRQ. (h) Figure with the area highlighted was used as LCfor FRQ in Figure 3G. (i) Figure with the area highlighted was used as LC for WC-1 develop the Figure 3G for LC for WC-1. (j) Figure with the area highlighted was used to develop the Figure 3G for LC for WC-2.

https://cdn.elifesciences.org/articles/79765/elife-79765-fig3-data5-v1.zip
Figure 4 with 7 supplements
WC-1 is required for adaptation to starvation in genome-wide scale.

(A) Distribution of number of genes showing starvation induced up- and downregulation in wt and ∆wc-1. Values on the y-axis of the bar graphs indicate the minimal and maximal fold-change of up- and downregulation, respectively. Venn-diagrams indicate the number of up- and downregulated genes in wt (red) and ∆wc-1(blue). (B) Distribution of genes expressed at lower and higher level in ∆wc-1 than in wt in standard or starvation medium. Values on the y-axis of the bar graphs indicate the minimal and maximal ratios of RNA levels (∆wc-1/wt). Venn-diagrams indicate the number of genes showing different expression in the two strains in the indicated medium (red: standard medium, blue: starvation). (C) Number of genes showing strain-specific changes in major metabolic functions in response to a 40 hr glucose deprivation. Positive and negative values indicate number of genes with increased and decreased RNA levels, respectively. Genes were classified by GO analysis (Mi et al., 2013). (D) Number of genes showing treatment-specific (2% vs 0.01% glucose) changes in their ∆wc-1/wt RNA ratio. Positive and negative values indicate number of genes with increased and decreased RNA ratio, respectively. Genes involved in major metabolic functions were classified by GO analysis (Mi et al., 2013).

Figure 4—source data 1

Genes, that changed in a strain-specific manner in response to glucose starvation and are direct targets of the WCC.

https://cdn.elifesciences.org/articles/79765/elife-79765-fig4-data1-v1.docx
Figure 4—source data 2

Gene Ontology (GO) enrichment analysis of genes showing at least two-fold significant alteration in their amount in response to starvation.

Significantly enriched functions are shown. Yellow highlight: wt-specific changes, red highlight: Δwc-1-specific changes.

https://cdn.elifesciences.org/articles/79765/elife-79765-fig4-data2-v1.xlsx
Figure 4—source data 3

Gene Ontology (GO) enrichment analysis of genes showing strain-specific response to starvation.

Significantly enriched functions are shown. GO enrichment analysis was performed on data obtained by the analysis shown in Figure 4—figure supplement 1, that is on genes showing exclusive or significantly higher change in their expression rate in one of the strains. (FDR: false discovery rate).

https://cdn.elifesciences.org/articles/79765/elife-79765-fig4-data3-v1.docx
Figure 4—source data 4

Genes of central carbon metabolism, amino acid biosynthesis and fatty acid metabolism, that showed strain-specific expression change to starvation.

Genes were selected with the help of the KEGG Mapper tool. Numbering of genes in Figure 4—figure supplements 46 can be found in the last column. Genes, that are direct targets of WCC are marked with bold typesetting.

https://cdn.elifesciences.org/articles/79765/elife-79765-fig4-data4-v1.docx
Figure 4—source data 5

Comparison of the results from RNA-seq and the experimental validation of the chosen genes with qPCR.

Experimental procedures were performed as described in Figure 4—figure supplement 7. (n=4, two sample t-test).

https://cdn.elifesciences.org/articles/79765/elife-79765-fig4-data5-v1.docx
Figure 4—figure supplement 1
Strain-specific differences of gene expression changes in response to starvation.

Concentric circles indicate the fold-change, numbers around the diagram indicate the genes ordered according to the extent of up/downregulation. (A) Genes showing wt-specific increase in their RNA levels in response to starvation. (B) Genes showing wt-specific decrease in their RNA levels in response to starvation. (C) Genes showing Δwc-1-specific increase in their RNA levels in response to starvation. (D) Genes showing Δwc-1-specific decrease in their RNA levels in response to starvation.

Figure 4—figure supplement 2
Glucose-specific differences in Δwc-1/wt ratio of gene expression.

Concentric circles indicate the fold-change, numbers around the diagram indicate the genes ordered according to the extent of up/downregulation. (A) Genes showing glucose-specific (2%) increase in their Δwc-1/wt ratio. (B) Genes showing glucose-specific decrease in their Δwc-1/wt ratio. (C) Genes showing starvation-specific (0.01%) increase in their Δwc-1/wt ratio. (D) Genes showing starvation-specific (0.01%) decrease in their Δwc-1/wt ratio.

Figure 4—figure supplement 3
Characterization of different metabolic pathways in strain-specific responses to glucose starvation.

Expression changes of genes involved in amino acid, carbohydrate and fatty acid metabolism in response to 40 hr glucose starvation. Positive values show number of genes with increased, while negative values indicate number of genes with decreased RNA levels. Number of genes showing strain-specific changes in wt or ∆wc-1 are marked with darker red and blue color, respectively. Genes were classified by GO analysis (Mi et al., 2013).

Figure 4—figure supplement 4
Genes of central carbon metabolism, that showed strain-specific change to starvation.

Network of genes were constructed based on the KEGG Mapper tool. Numbering of genes is resolved in Figure 4—source data 4. Red arrow: wt-specific change; Blue arrow: ∆wc-1-specific change; Solid line: significant increase; Dashed line: significant decrease.

Figure 4—figure supplement 5
Genes of amino acid biosynthesis, that showed strain-specific change to starvation.

Network of genes were constructed based on the KEGG Mapper tool. Numbering of genes is resolved in Figure 4—source data 4. Red arrow: wt-specific change; Blue arrow: ∆wc-1-specific change; Solid line: significant increase; Dashed line: significant decrease.

Figure 4—figure supplement 6
Genes of fatty acid metabolism, that showed strain-specific change to starvation.

Network of genes were constructed based on the KEGG Mapper tool. Numbering of genes is resolved in Figure 4—source data 4. Red arrow: wt-specific change; Blue arrow: ∆wc-1-specific change; Solid line: significant increase; Dashed line: significant decrease.

Figure 4—figure supplement 7
qPCR validation of the RNA-seq data.

Three groups of processes (amino acid metabolism, carbohydrate metabolism and conidiation) that were hypothesized to change in response to glucose deprivation were tested. Values were normalized to those measured in wt grown in standard medium. (aga-1: arginase (NCU02333); gln-1: glutamine synthetase (NCU06724); gdh-1: NAD-specific glutamate dehydrogenase (NCU00461); pect: pectin esterase (NCU10045); tca-3: aconitate hydratase, mitochondrial (NCU02366); choldh: choline dehydrogenase (NCU01853); fl: conidial development protein fluffy (NCU08726); con-10: conidiation-specific protein 10 (NCU07325); ccg-2: hydrophobin (NCU08457)) (n=4, ± SEM, Factorial ANOVA, significant treatment effect (gdh-1, ccg2), significant strain effect (pect) significant strain*treatment interaction (aga-1, gln-1, tca-3, coldh, fl, con-10)).

Figure 5 with 1 supplement
Proper recovery from starvation requires a functional clock.

(A) Schematic design of the experiment. Mycelial discs of the wt and the clock mutant strains were incubated in standard liquid medium in L/D12. After 24 hr mycelial balls were transferred to starvation medium. Following 40 hr of starvation, glucose was added to the medium. Yellow and black bars indicate the periods cultures spent in light and darkness, respectively. (B) Comparison of the growth of wt and clock mutants after glucose resupply. Pictures of the liquid (Before: upper images) and the vacuum filtered cultures (Before: lower images) were taken after 40 hr of starvation and 24 hr after glucose resupply (After). (C) wt grows faster after glucose supplementation than clock mutants in L/D. Experimental procedures were performed as described in (A). Dry weight of cultures was measured after 24 hr of glucose resupply. Values were normalised to the dry weight measured before glucose resupply (indicated with dashed line). (n=4, ± SEM, Factorial ANOVA, significant strain*treatment interaction, post hoc analysis: Tukey HSD test). (D) wt grows faster after glucose supplementation than clock mutants in DD. Experimental procedures were performed as described in (A) except the light conditions: after 24 hr in LL, cultures were incubated in DD. Values were normalised to the dry weight measured before glucose resupply (indicated with dashed line). (n=3, ± SEM, Factorial ANOVA, significant strain*treatment interaction, post hoc analysis: Fisher LSD test). (E) Lack of wc-1 affects the proper glucose transporter expression in response to starvation. glt-1 counts in RNAseq data. Values were normalized to that of cultures grown in 2% glucose. (F) Lack of the functional clock affects the proper alignment of glucose transporter expression to glucose levels. Experiments were performed as described in (A). Samples were harvested at the indicated time points following glucose readdition and relative levels of glt-1 RNA were determined by qPCR. (n=3, ± SEM, Factorial ANOVA, significant strain*treatment interaction, post hoc analysis: Tukey HSD test).

Figure 5—figure supplement 1
Growth rate of wt recovers faster, than that of ∆wc-1 and frq10 on solid medium.

Experiments were performed as described in Figure 5A. Race tubes containing 2% of glucose were inoculated with starved and normal mycelia from the liquid cultures and growth rate was determined in three intervals (0–6 hr, 6–12 hr, 12–24 hr) during the first day following inoculation. Growth rate of the samples originated from starved cultures was normalized to those of the non-starved samples (indicated with dashed line) of the same strain during the same period. (n=12, ± SEM, two-sample t-test).

Model representing the role of the negative feedback and the PKA-, PP2A- and GSK-mediated signaling in the control of the molecular clock at high glucose levels (A) and under starvation (B).

Starvation reduces the activity of both PKA and PP2A but stimulates GSK. PKA can act as a central regulator of the starvation-induced modifications of the clock components, as its weakened activity results in enhanced action and the consequent destabilization of the WCC, resulting in compensated frq transcription at significantly reduced WC levels. PKA also affects PP2A. Reduced activity of PP2A and the parallel induction of GSK in starvation can lead to hyperphosphorylation of FRQ which in turn lessens the negative feedback on the WCC. Higher and lower activities of enzymes and processes are indicated by more and less intense colors, respectively.

Author response image 1
Growth rate on race tubes containing 2% glucose.

Cultures were incubated in 2% liquid medium before the inoculation to race tubes. (n=15; n.s.).

Tables

Table 1
The first 15 most upregulated annotated genes in wt during glucose starvation.

For experimental procedures of the RNA-seq analysis see Materials and Methods section. Genes with more pronounced upregulation in wt compared to Δwc-1 are bold-lettered.

IDNameUpregulation in wt(fold change)Upregulation in ∆wc-1(fold change)wt/∆wc-1 (2%)Gene product
NCU02500ccg-4281n.s.n.s.clock-controlled pheromone
NCU07225gh11-2254163n.s.xylanase
NCU08769con-611788n.s.conidiation specific protein
NCU05924gh10-19615n.s.xylanase
NCU00943tre-177102n.s.trehalase
NCU07325con-107013n.s.conidiation specific protein
NCU08189gh10-26713n.s.xylanase
NCU10055nop-16658n.s.opsin
NCU06905thnr65n.s.0.01tetrahydroxynaphthalene reductase
NCU08457eas4973n.s.hydrophobin
NCU09873acu-639122.9phosphoenolpyruvate carboxykinase
NCU10021hgt-135561.4monosacharide transporter
NCU08755gh3-32838n.s.beta-glucosidase
NCU00762gh5-121n.s.n.s.endoglucanase
NCU08114cdt-22111n.s.hexose transporter
Key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Neurospora crassa)wtFungal Genetics Stock Center#2489
Strain, strain background (Neurospora crassa)wt,bdFungal Genetics Stock Center#1858
Strain, strain background (Neurospora crassa)bd;frq10Fungal Genetics Stock Center#7490
Strain, strain background (Neurospora crassa)bd;frq9Fungal Genetics Stock Center#7779
Strain, strain background (Neurospora crassa)rgb-1Fungal Genetics Stock Center#8380
Strain, strain background (Neurospora crassa)mcbFungal Genetics Stock Center#7094
Strain, strain background (Neurospora crassa)bd; ∆wc1https://doi.org/10.1093/emboj/20.3.307
https://doi.org/10.1093%2Femboj%2F18.18.4961
Strain, strain background (Neurospora crassa)bd;frq10, his-3https://doi.org/10.1128%2Fmcb.16.2.513
Strain, strain background (Neurospora crassa)frq10 ∆fcd1-2This paper See Materials and Methods.
Strain, strain background (Neurospora crassa)qa-gskhttps://doi.org/10.1074%2Fjbc.M112.396622
Strain, strain background (Escherichia coli)∆H5-αNew England Biolabs
Antibodyα-FRQ (mouse monoclonal)https://doi.org/10.1093/emboj/20.24.7074WB (1:5000)
Antibodyα-WC1 (rabbit polyclonal)https://doi.org/10.1101%2Fgad.360906WB (1:10000)
Antibodyα-WC2 (rabbit polyclonal)https://doi.org/10.1038%2Fembor.2008.113WB (1:10000)
AntibodyGoat- α-mouse IgG (H/L): HRP, polyclonalBio-RadCat#1706516WB (1:5000)
AntibodyGoat α-rabbit IgG (H/L): HRP, polyclonalBio-RadCat#1706515WB (1:5000)
Recombinant DNA reagentpBM60-ClaI-∆FCD1-2 (plasmid)https://doi.org/10.1016/j.molcel.2011.06.033
Sequence-based reagentfrq Fhttps://doi.org/10.1093/emboj/20.24.7074qPCR primer TTGTAAT
 GAAAGGT
 GTCCGAA
 GGT
Sequence-based reagentfrq Fhttps://doi.org/10.1093/emboj/20.24.7074qPCR primer GGAGGAA
 GAAGCGG
 AAAACA
Sequence-based reagentfrq probehttps://doi.org/10.1093/emboj/20.24.7074qPCR primer [6-FAM] AC
 CTCCCAAT
 CTCCGAAC
 TCGCCTG
 [TAMRA]
Sequence-based reagentwc-1 Fhttps://doi.org/10.1101%2Fgad.360906qPCR primer ACCTCGCT
 GTCCTCGA
 TTTG
Sequence-based reagentwc-1 Rhttps://doi.org/10.1101%2Fgad.360906qPCR primer TGCTGGGC
 CTCTTTCAA
 CTC
Sequence-based reagentwc-1 probehttps://doi.org/10.1101%2Fgad.360906qPCR primer [6-FAM] CC
 GTCCGAC
 ATCGTGC
 CGG [TAMRA]
Sequence-based reagentwc-2 Fhttps://doi.org/10.1038%2Fembor.2008.113qPCR primer AGTTTGCA
 CCCAATCC
 AGAGA
Sequence-based reagentwc-2 Rhttps://doi.org/10.1038%2Fembor.2008.113qPCR primer AGGGTCG
 AAGCCAT
 CATGAAC
Sequence-based reagentwc-2 probehttps://doi.org/10.1038%2Fembor.2008.113qPCR primer [6-FAM] AG
 TCGCCTTT
 CTGCCAG [TAMRA]
Sequence-based reagentccg-2 FThis paperqPCR primer GCTGCGT
 TGTCGGT
 GTCAT
Sequence-based reagentccg-2 RThis paperqPCR primer GGAGTTG
 CCGGTGT
 TGGTAA
Sequence-based reagentccg-2 probeThis paperqPCR primer [6-FAM] AA
 TGTGGTG
 CCAGCGT
 CAAGTGC
 TG [TAMRA]
Sequence-based reagental-2 Fhttps://doi.org/10.1016/j.cell.2010.08.010qPCR primer ACCTGGC
 CAATTCG
 CTCTTT
Sequence-based reagental-2 Rhttps://doi.org/10.1016/j.cell.2010.08.010qPCR primer GACAGAA
 GGAGTAC
 AGCAGGA
 TCA
Sequence-based reagental-2 probehttps://doi.org/10.1016/j.cell.2010.08.010qPCR primer [6-FAM] CT
 GGTCGAC
 TCCGCAT
 T [TAMRA]
Sequence-based reagentact Fhttps://doi.org/10.1101%2Fgad.360906qPCR primer AATGGGT
 CGGGTAT
 GTGCAA
Sequence-based reagentact Rhttps://doi.org/10.1101%2Fgad.360906qPCR primer CTTCTGG
 CCCATAC
 CGATCA
Sequence-based reagentact probehttps://doi.org/10.1101%2Fgad.360906qPCR primer [6-FAM] CA
 GAGCTGT
 TTTCCCT
 TCCATCG
 TTGGT [TAMRA]
Sequence-based reagentgna-3 FThis paperqPCR primer ATATCCT
 CACTTGA
 CACAAGC
 C
Sequence-based reagentgna-3 RThis paperqPCR primer CGGAGTC
 TTTAAGG
 GCGTTAT
 T
Sequence-based reagentgna-3 probeThis paperqPCR primer [6-FAM] TC
 CAACATC
 CGTCTCG
 TGTTTGC
 T [TAMRA]
Sequence-based reagenttfc-1 FThis paperqPCR primer CGATTTG
 ATCCCTC
 CTCCTAA
 C
Sequence-based reagenttfc-1 RThis paperqPCR primer GGGCTGA
 TTTCCTT
 GGTGTA
Sequence-based reagenttfc-1 probeThis paperqPCR primer [6-FAM] AT
 GAGCTTG
 CCCTTCC
 AATACGG
 T[TAMRA]
Sequence-based reagentsarA FThis paperqPCR primer TGGTTGT
 GGTCTTG
 GTTCTAC
Sequence-based reagentsarA RThis paperqPCR primer TGGCAAC
 GCGATCA
 TTCT
Sequence-based reagentsarA probeThis paperqPCR primer [6-FAM] AT
 ATCCTTT
 CCAACCT
 CGGCCTG
 C[TAMRA]
Sequence-based reagentaga-1 FThis paperqPCR primer CAGTGTC
 AAGAAGC
 TGGTCTA
 C
Sequence-based reagentaga-1 RThis paperqPCR primer TGCCGTG
 CTTGTCA
 ATGT
Sequence-based reagentgln-1 FThis paperqPCR primer GCAACAC
 GTCCTCA
 CTACTT
Sequence-based reagentgln-1 RThis paperqPCR primer GATTGTT
 GATTCTG
 ACGCCAT
 TT
Sequence-based reagentgdh-1 FThis paperqPCR primer AGAGCAG
 ATGAAGC
 AAGTCAA
 G
Sequence-based reagentgdh-1 RThis paperqPCR primer CGTCGAT
 GCCAAGC
 TCATTAT
Sequence-based reagentcon-10 FThis paperqPCR primer CTGGCAC
 TGGTAAC
 GACAA
Sequence-based reagentcon-10 RThis paperqPCR primer GCAATTT
 CGCGCTG
 TTTCT
Sequence-based reagentflf FThis paperqPCR primer GGCAGCG
 ATAACTC
 GTGAA
Sequence-based reagentflf RThis paperqPCR primer AAGAAGG
 CGTAGCA
 TGTGAA
Sequence-based reagentpect FThis paperqPCR primer CTTGGGT
 ATATCAC
 CGCCTTG
Sequence-based reagentpect RThis paperqPCR primer CTCCCGA
 AGGCACA
 TTGTTA
Commercial assay or kitQuantiTect Reverse Transcription KitQIAGENCat#205314
Commercial assay or kitSer/Thr Phosphatase Assay SystemPromegaCat#V2460
Commercial assay or kitLightCycler 480 Probes MasterRocheCat#048873
01001
Chemical compound, drugTriReagentSigma-AldrichCat#93289
Software, algorithmStatistica 13Statsoft Inc, Tulsa, OK, USA
Software, algorithmImageJhttps://doi.org/10.1038/nmeth.2089
OtherRNA sequencing datadoi:10.5061/dryad.t4b8gtj4pSee RNA sequencing and data analysis in Material and Methods

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anita Szőke
  2. Orsolya Sárkány
  3. Géza Schermann
  4. Orsolya Kapuy
  5. Axel CR Diernfellner
  6. Michael Brunner
  7. Norbert Gyöngyösi
  8. Krisztina Káldi
(2023)
Adaptation to glucose starvation is associated with molecular reorganization of the circadian clock in Neurospora crassa
eLife 12:e79765.
https://doi.org/10.7554/eLife.79765